Cho tam giác ABC có trung tuyến ma=c. CMR: cotC = 3cotB
Cho tam giác ABC có AM là đường trung tuyến . Biết AM=AB. chứng minh :
a, sinA = 2sin( B-A) b, cotC=3cotB
Cho tam giác ABC có AM là trung tuyến, AM=AB. Cmr :
a, sinA=2sin(B-A)
b, cosC=3cotB
Đề bài sai, phản ví dụ:
Tam giác ABC vuông tại A với \(AB=1;AC=\sqrt{3};BC=2\)
Khi đó \(AM=\dfrac{1}{2}BC=1=AB\) thỏa mãn yêu cầu bài toán
Góc \(B=60^0;A=90^0\)
Khi đó: \(sinA=1\) trong khi \(2sin\left(B-A\right)=2sin\left(-30\right)=-1\)
Cho tam giác nhọn ABC, góc B góc C, đường cao AH và đường trung tuyến AM. a CMR HC HB 2HMb Gọi a là góc tạo bởi đường cao và đường trung tuyến. CMR tanα cotC−cotB2
cmr 2 trung tuyến kẻ từ B và C của tam giác ABC vuuong goc với nhau khi và chỉ khi có hệ thức sau cotA = 2(cotB+cotC)
Cho tam giác ABC , đường trung tuyến AM . CMR : nếu \(cotB=3.cotC\) thì AM=AC
Gọi AH là đường cao của tam giác ABC (H thuộc BC)
Ta có : \(cotB=\frac{BH}{AH};cotC=\frac{CH}{AH}\) . Theo giả thiết : \(cotB=3cotC\Rightarrow BH=3CH\)
Mà BH + CH = BC\(\Rightarrow BC=4CH\Rightarrow CH=\frac{BC}{4}=\frac{2CM}{4}=\frac{CM}{2}\)
Vậy \(CH=\frac{1}{2}CM\); Ta cũng có : \(BH=BM+MH=2CH+MH=3CH\Rightarrow MH=CH\)
Do đó AH là đường trung trực của CM => AC = AM (đpcm)
AM sao có thể bằng AC đc? Đề có vấn đề j ko bn?
Cho tâm giác ABC nhọn, có các trung tuyến BM, CN vuông góc với nhau.
a) Cmr: cotB + cotC >= 2/3
b) Tìm hệ thức thể hiện mối quan hệ 3 cạnh của tam giác
Theo bạn thì câu trả lời sẽ là bao nhiêu? Cách giải thứ nhất là cộng kết quả hàng trên với số đầu hàng dưới lại, chúng ta sẽ có kết quả hàng dưới (1 + 4 = 5, 5 + 2 + 5 = 12,...), cứ thế, ta sẽ có con số cuối cùng là 40.
Tuy nhiên vẫn còn một cách giải khác, đó là nhân số thứ hai trong phép tính với số đầu rồi tiếp tục cộng thêm số đầu (4 x 1 + 1 = 5, 5 x 2 + 2 = 12...), nếu tính theo cách này thì đáp án cuối sẽ là 96.
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Cho tam giác ABC có đường trung tuyến BM, CN vuông góc với nhau c/m cotA + cotC >= 2/3
1) Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a)Tính số đo góc ABD?
b)Chứng minh : Tam giác ABC = Tam giác BAD.
c) So sánh AM và BC.
2) Cho tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. CMR: góc BAC = 90 độ.
Cho tam giác ABC có góc A và B nhọn, các đường trung tuyến BM và CN vuông góc với nhau .
CMR: cotB + cotC\(\ge\)\(\frac{2}{3}\)