giải pt
`(2x^2 +x-2016)^2 +4(x^2 -3x-1000)^2 = 4(2x^2 +x-2016)(x^2 -3x-1000)`
Giải pt:1, \(\sqrt[3]{3x^2-x+2015}-\sqrt[3]{3x^2-7x+2016}-\sqrt[3]{6x-2017}=\sqrt[3]{2016}\) 2, \(x^2-x-1000\sqrt{1+8000x}=1000\) 3, \(x+2=3\sqrt{1-x^2}+\sqrt{1+x}\) Mấy bài này thấy khó nên chưa làm thử có j mn giúp
Giải phương trình sau:
a, 5(x2-2x-1)+2(3x-2)=5(x+1)2
b, 2x(x-2016)+2016=x
c, |x+2|+|7-x|=3x+4
a)\(5\left(x^2-2x-1\right)+2\left(3x-2\right)=5\left(x+1\right)^2\\ \Leftrightarrow5x^2-10x-5+6x-4=5\left(x^2+2x+1\right)\\ \Leftrightarrow5x^2-4x-9=5x^2+10x+5\\ \Leftrightarrow-14x=14\\ \Leftrightarrow x=-1\\ VậyS=\left\{-1\right\}\)
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Giải pt:
\(\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}=x^4-x^2-2x+4\)
đk: \(-x^4+3x-1\ge0\)
Có \(-\left(x^4+1\right)\le-2x^2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\)
Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\) (*)
Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)
Từ (*) (2*) dấu = xảy ra khi x=1 (TM)
Vậy x=1
giải phương trình vô tỉ sau
câu 1) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
câu2) \(\sqrt[2016]{x^2+3x-3}+\sqrt[2016]{-x^2-3x+5}=2\)
câu 3) \(2x^2-2x+11=3\sqrt[3]{4x-4}\)
a)ĐK:..... tự làm
\(\Leftrightarrow\sqrt{2x^2-1}-1+x\sqrt{2x-1}-1=2x^2-2\)
\(\Leftrightarrow\frac{2x^2-1-1}{\sqrt{2x^2-1}+1}+\frac{x^2\left(2x-1\right)-1}{x\sqrt{2x-1}+1}=2\left(x^2-1\right)\)
\(\Leftrightarrow\frac{2x^2-2}{\sqrt{2x^2-1}+1}+\frac{2x^3-x^2-1}{x\sqrt{2x-1}+1}=2\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2-1}+1}+\frac{\left(x-1\right)\left(2x^2+x+1\right)}{x\sqrt{2x-1}+1}-2\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2\left(x+1\right)}{\sqrt{2x^2-1}+1}+\frac{2x^2+x+1}{x\sqrt{2x-1}+1}-2\left(x+1\right)\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)trình bày lại ý tưởng
ĐK:....
Áp dụng BĐT AM-GM ta có:
\(\sqrt[2016]{x^2+3x-3}\le\frac{x^2+3x-3+1+1+....+1}{2016}\text{(2015 số 1)}\)
\(\sqrt[2016]{-x^2-3x+5}\le\frac{-x^2-3x+5+1+1+....+1}{2016}\left(\text{2015 số 1,too}\right)\)
Cộng theo vế 2 BĐT trên ta có:
\(VT\le\frac{x^2+3x-3-x^2-3x+5+1+1+....+1}{2016}\left(\text{4030 số 1}\right)\)
\(=\frac{-3+5+1+1+....+1}{2016}=\frac{4032}{2016}=VP\)
Xảy ra khi \(x=1\) (thực ra còn x=-4 nữa cơ mà ko thỏa mẵn điều kiện để xài AM-GM)
c) Câu này sai đề nhé
giải pt sau:a,x.(x-3)=(2-x).(x-3)
b,x-1/2+x-1/3+x-1/2016=0
c,2x/3+2x-1/6=4
d,7+2x=4.(5-x)
e,x+2/x-2-1/x=2/x.(x-2)
giải pt:
a) x^5 + 2x^4 + 3x^3 + 3x^2 + 2x +1=0
b) x^4 + 3x^3 - 2x^2 + x - 3 = 0
a) \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)+x^3\left(x+1\right)+2x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+x^2+x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
Dễ thấy \(x^2+x+1>0\forall x;x^2+1>0\forall x\)
\(\Rightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy....
b) \(x^4+3x^3-2x^2+x-3=0\)
\(\Leftrightarrow x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0\)
\(\Leftrightarrow x^3\left(x-1\right)+4x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+4x^2+2x+3\right)=0\)
...
\(\Leftrightarrow x=1\)
p/s: có bác nào giải đc pt \(x^3+4x^2+2x+3=0\)thì giúp nhé :))
tìm x biết
a,2^11=x
b, 2^2016=x
c,(2x+1)^3=125
d, (2x-3)^2=625
e(2x-4)^2014+(3x-6)^2016< hoặc bằng 0
1/Tìm GTLN của \(A=\frac{x}{\left(x+2016\right)^2}\) biết x>0
2/Giải hệ pt \(3x-2y+xy+16=0\)
\(x^2+y^2-2x+4y-33=0\)
3/Giải pt a) \(\sqrt{2x^2-x}=2x-x^2\)
b) \(3\sqrt{2x+1}-2\sqrt[3]{4-3x}=13\)
1. \(A=\frac{1}{\left(\sqrt{x}+\frac{2016}{\sqrt{x}}\right)^2}\)
Áp dụng bất đẳng thức Côsi cho mẫu số.
2. Thế y theo x từ pt đầu xuống pt sau rồi quy đồng, giải pt bậc 4.
C2: \(pt\left(1\right)-2pt\left(2\right)\Leftrightarrow\left(x-y+5\right)\left(x-y-13\right)=0\)
3. a.
\(\text{ĐK: }2x^2-x=x\left(2x-1\right)\ge0\Leftrightarrow x\le0\text{ hoặc }x\ge\frac{1}{2}\)
Để pt có nghiệm thì \(2x-x^2\ge0\Leftrightarrow x\left(2-x\right)\ge0\Leftrightarrow0\le x\le2\)
Vậy \(\frac{1}{2}\le x\le2\)
\(pt\Leftrightarrow\sqrt{x\left(2x-1\right)}=x\left(2-x\right)\Leftrightarrow\sqrt{2x-1}=\sqrt{x}\left(2-x\right)\text{ (do }x>0\text{)}\)
\(\Leftrightarrow2x-1=x\left(2-x\right)^2\Leftrightarrow\left(x-1\right)\left(x^2-3x-1\right)=0\)
b.
\(\text{ĐK: }......\)
\(\sqrt{2x+1}=a;\text{ }\sqrt[3]{4-3x}=b\text{ }\left(a\ge0\right)\)
\(pt\Leftrightarrow3a-2b=13\Leftrightarrow a=\frac{2b+13}{3}\)
Lại có: \(3a^2+2b^3=3\left(2x+1\right)+2\left(4-3x\right)=11\)
Thay vào: \(3\left(\frac{2b+13}{3}\right)^2+2b^3=11\Leftrightarrow6b^3+4b^2+52b+136=0\)
\(\Leftrightarrow\left(b+2\right)\left(6b^2-8b+68\right)=0\)