tìm x :1+3+5+...+(2x+1)=2601
tìm x :1+3+5+...+(2x+1)=2601
cứu mk vs :
tìm x :
1+3+5+...+(2x+1)=2601
cứu vs !!!!!!!!!!!!!!1
\(1+3+5+...+\left(2x+1\right)=2601\)
số số hạng: \(\left[\left(2x+1\right)-1\right]:2+1=x+1\)
tổng: \(\left(2x+1\right)+1:2x\left(x+1\right)=\left(x+1\right)^2\)
\(\left(x+1\right)^2=2601\)
\(\Rightarrow\orbr{\begin{cases}x+1=51\\x+1=-51\end{cases}\Rightarrow\orbr{\begin{cases}x=50\\x=-52\end{cases}}}\)
số các số hạng có đc là ( 2x-1+1):2+1 = x+1 số hạng
theo ta có : (2x+2)(x+1)/2 =2601
2(x+1)(x+1)/2=2601
(x+1)2 =2601
\(\Rightarrow\) \(\hept{\begin{cases}x+1=\sqrt{2601}\\\\x+1=-\sqrt{2601}\end{cases}}\)
vậy x=50 hoặc x=-52
TÌM X BIẾT :
1+3+5+...+(2x+1)=2601
ai nhanh mk tk !!!!!!!!!!!!! giúp mk nha!
HEPL MEEE!!
Tìm x
1 + 3 + 5 + ... + '' 2x + 1 ''\(=\) 2601
Các bạn giúp mình nhé
Số số hạng : (2x+1) - 1 : 2 + 1 = x +1
Tổng : (2x+1) + 1 : 2 x (x+1) = (x+1)(x+1)
(x+1)(x+1) = 2601
(x+1)(x+1) = 51x51
x + 1 = 51
x = 50
2x + 1 = 101
2x = 101 - 1
2x = 100
x = 100 : 2
x = 50
tìm số tữ nhiên x thỏa mãn :
1+3+5+.....+x=2601
Từ 1 đến x có số số hạng là :
(x - 1) : 2 + 1 =\(\frac{x-1}{2}+1=\frac{x}{2}-\frac{1}{2}+1=\frac{x}{2}+\frac{1}{2}=\frac{x+1}{2}\)
Trung bình cộng của tổng là :
(x + 1) : 2= \(\frac{x+1}{2}\)
=> Tổng là : 1 + 3 + 5 + ... + x = \(\frac{x+1}{2}.\frac{x+1}{2}\)= 2601
=> \(\left(\frac{x+1}{2}\right)^2=2601\)
=> \(\left(\frac{x+1}{2}\right)^2=51^2\)
Vì \(x\inℕ\Rightarrow\frac{x+1}{2}\inℕ\)
=> \(\frac{x+1}{2}=51\)
=> x + 1 : 2 = 51
=> x + 1 = 51 . 2
=> x + 1 = 102
=> x = 102 - 1
=> x = 101
x+ ( x+2) + (x+4) + ( x+6) +....... + (x+98)+ (x+100) =2601
tìm X
x+ ( x+2) + (x+4) + ( x+6) +....... + (x+98)+ (x+100) =2601
x + x + 2 + x + 4 + x + 6 + ... + x + 98 + x + 100 = 2601
x + x + x + .... + x ( 51 chữ x ) + ( 2 + 4 + 6 + ... + 98 + 100 ) = 2601
51x + 2550 = 2601
51x = 51
x = 1
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
Tìm x
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
`=> (x-3)5 = (2x+1)3`
`=> 5x-15 = 6x+3`
`=> 5x-6x = 15+3`
`=> -x=18`
`=> x=-18`
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
`=> (x+1)x = 22*6`
`=> (x+1)x = 132`
`=> x^2 + x = 132`
`=> x^2+x-132=0`
`=> (x-11)(x+12)=0`
`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
`=> (2x-1)x = 2*5`
`=> 2x^2 - x =10`
`=> 2x^2 - x - 10 =0`
`=> 2x^2 + 4x - 5x - 10 =0`
`=> (2x^2 + 4x) - (5x+10)=0`
`=> 2x(x+2) - 5(x+2)=0`
`=> (2x-5)(x+2)=0`
`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
`=> (2x-1)(2x+1)=21*3`
`=> 4x^2 + 2x - 2x - 1 = 63`
`=> 4x^2 - 1=63`
`=> 4x^2 - 1 - 63=0`
`=> 4x^2 - 64 = 0`
`=> 4(x^2 - 16)=0`
`=> 4(x^2 + 4x - 4x - 16)=0`
`=> 4[(x^2+4x)-(4x+16)]=0`
`=> 4[x(x+4)-4(x+4)]=0`
`=> 4(x-4)(x+4)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
`=> (2x+1)(x+1) = 9*5`
`=> (2x+1)(x+1)=45`
`=> 2x^2 + 2x + x + 1 = 45`
`=> 2x^2 + 3x + 1 =45`
`=> 2x^2 + 3x + 1 - 45 =0`
`=> 2x^2+3x-44=0`
`=> 2x^2 + 11x - 8x - 44=0`
`=> (2x^2 +11x) - (8x+44)=0`
`=> x(2x+11) - 4(2x+11)=0`
`=> (x-4)(2x+11)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)
. Tìm x, biết:
a) 6x.(x – 5) + 3x.(7 – 2x) = 18 b) 2x.(3x + 1) + (4 – 2x).3x = 7 c) 0,5x.(0,4 – 4x) + (2x + 5).x = -6,5 | d) (x + 3)(x + 2) – (x - 2)(x + 5) = 6 e) 3(2x - 1)(3x - 1) – (2x - 3)(9x - 1) = 0 |
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
Tìm x
a) (12x-5)(3x-1)-(18x-1)(2x+3)=5
b) (x+2)(x-3)-(x-2)(x+5)=2(x+3)
c) (2x+3)(2x-1)-(2x+5)-(2x-3)=12