Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Anh Thư
Xem chi tiết
Đỗ Thị Phương Anh
Xem chi tiết
Dũng Nguyễn Đình
19 tháng 4 2016 lúc 20:33

Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)

Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)

Vậy B < 1

Vũ Ngọc Đoài
19 tháng 4 2016 lúc 20:45

haha

Nguyễn Đỗ Minh Châu
19 tháng 4 2016 lúc 22:49

Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{8^2}<\frac{1}{7.8}\) 

<=> B<\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{7.8}\) 

<=> B<\(\frac{1}{1}-\frac{1}{2}+.......+\frac{1}{7}-\frac{1}{8}\) 

<=> B<\(1-\frac{1}{8}\) 

<=> B<\(\frac{7}{8}\) <1

Nguyễn Phương Thảo
Xem chi tiết
Arima Kousei
12 tháng 4 2018 lúc 18:11

Ta có :  \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}\)

\(\Rightarrow B< \frac{7}{8}\)

\(\Rightarrow B< \frac{8}{8}=1\)

Vậy \(B< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

nguyen huy dung
12 tháng 4 2018 lúc 18:12

nhan xet1/2^2<1/1.2=1/1-1/2

1/3^2<1/2.3=1/2-1/3

1/4^2<1/3.4=1/3-1/4

..................................

1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/8<

1/1-1/8=8/8-1/8=7/8<1 vay B<1

Haibara Ail
12 tháng 4 2018 lúc 18:17

Ta có

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.......;\frac{1}{10^2_{ }}< \frac{1}{9.10}\)

Suy ra

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

Hay B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)

B<\(1-\frac{1}{10}\)

B<1(Vì 1/10 >0)

Học tốt nhé 

thien su
Xem chi tiết
nguyen duc thang
29 tháng 4 2019 lúc 15:37

B < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

B < \(1-\frac{1}{8}\)mà 1 - 1/8 < 1

=> B < 1 ( dpcm )

Vậy ...

\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}< 1-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy B<1

Hok tốt

Đỗ Thanh Thảo
Xem chi tiết
Nguyễn Như Đạt
19 tháng 5 2015 lúc 8:11

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}

kudosinichi
Xem chi tiết
Hot Boy
4 tháng 5 2016 lúc 21:39

bé hơn mấy???

Nguyễn Thị Thủy
4 tháng 5 2016 lúc 21:57

Hình như hơi thiếu đề :(

ngan dai
Xem chi tiết
Nguyen Le Trung
Xem chi tiết
giang ho dai ca
29 tháng 5 2015 lúc 17:43

Ta thấy :

\(\frac{1}{2^2}

witch roses
29 tháng 5 2015 lúc 17:42

TA CÓ B<1/1.2 +1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

=1-1/2+1/2-1/2+1/3-1/4...+1/7-1/8

=1-1/8<1

VẬY B<1

Thắng Max Level
27 tháng 3 2017 lúc 21:07

B<1 bạn nha

CHÚC BẠN HỌC GIỎI

Phạm Lê Quý Anh
Xem chi tiết
giang ho dai ca
11 tháng 5 2015 lúc 14:03

Ta thấy :

              \(\frac{1}{2^2}

trịnh quỳnh trang
11 tháng 5 2015 lúc 14:07

Giữ nguyên phân số 1/2^2, còn các phân số khác ta thay bằng các phân số lớn hơn, ta có:

B<1/2^2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8 = 1/4+B

Dễ dàng ta tính được:

B = 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8 = 1/2-1/8

Do đó: B<1/4+1/2-1/8<1