Tìm x:
1)x^2+y^2+34+2xy-4x-10y=0
2)5x^2+y^2+10-4xy-6y+10x
Tìm x;y
1)x^2+y^2+34+2xy-4x-10y
2)5x^2+y^2+10-4xy-6y+10x
Tìm x;y
1)x^2+y^2+34+2xy-4x-10y=0
2)5x^2+y^2+10-4xy-6y+10x=0
Tìm số nguyên dương x,y biết:
a) \(x^2+5y^2+2x-4xy-10y-9=0\)
b) \(5x^2+5y^2+8xy+2+2y-2x=0\)
c) \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
d) \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
Tìm GTNN hoặc GTLN của các bt sau:
D=x^2-4xy+5y^2+10x-22y+18
E=x^2+xy+y^2+2
G=x^2+5y^2+2x-4xy-10y+14
K=x^2-xy+y^3
F=5x^2+y^2+10+4xy-14x-6y
(Đang gấp mai nộp rồi)
Cm các biểu thức sau ko âm voiứ mọi x, y :
a> x^2+ 5y^2+2x+6y+34
b> 5x^2+10y^2-6xy-4x-2y+9
c> 5x^2+y^2-4xy-2y+8x+2013
tìm giá trị nhỏ nhất của các biểu thức
A=2x^2-10x+17
B=(x-1)(x+2)(x+3)(x+6)
C=5x^2+y^2+10+4xy-14x-6y
D=2x^2+2y^2+26+12x-8y
E=5x^2+10y^2+26-14xy-18x-28y
tìm giá trị nhỏ nhất:
B= (x-2).(x-5).x^2-7x-10
C= x^2- 4xy + 5y^2 +10x - 22y +28
d= x^2 +xy + y^2 +1
E= 5x^2 +10y^2 - 6xy - 4x - 2y +3
G=(2x-1)^2 + (x+2)^2
B=[(x - 2)(x - 5)](x2– 7x - 10)
= (x2- 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2- 102
= (x2 - 7x)2 - 100
=>(x2-7x)2\(\ge\) 100
GTNN = -100 \(\Rightarrow\) x2 - 7x = 0 \(\Leftrightarrow\) x(x-7) = 0 \(\Leftrightarrow\) x = 0 hoặc x = 7
B = x2 - 4xy + 5y2 + 10x - 22y + 28
= x2 - 4xy + 4y2+ y2+ 10(x-2y) + 28
= (x - 2y)2+ 10(x-2y) + 25 + y2- 2y+ 1 + 2
= (x-2y + 5)2 + (y-1)2 + 2\(\ge\) 2
GTNN B = 2, khi y=1, x=-3
Tìm GTNN cùa:
a, \(2x^2+y^2+4x-2y-2xy+10\)
b,\(5x^2+y^2+2xy-4x\)
c,\(x^2-4xy+5y^2+10x-22y+28\)
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)
\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi x=1/2 và y=-1/2
c)\(x^2-4xy+5y^2+10x-22y+28=x^2-2x\left(2y-5\right)+5y^2-22y+28\)
\(=x^2-2x\left(2y-5\right)+\left(4y^2-20y+25\right)+\left(y^2-2y+1\right)+2\)
\(=x^2-2x\left(2y-5\right)+\left(2y-5\right)^2+\left(y-1\right)^2+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x=-3 và y=1
TIM GTNN :
B= 5x^2 -x-2
C=x^ -4xy +7y^2+y+5
D = x^2 +y^2+z^2-xy-yz-zx-+5
E = x^2- 2xy -4x+2y^2+6y+10
F = 4x^2 +4xy+4x+3y^2+8y+20
H = (x^2-2x+3)*(x^2-2x+5)+10
2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y)
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm
dau = cay ra <=> x=y=z=1/3