Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị yến nhi
Xem chi tiết
Đức Phạm
5 tháng 7 2017 lúc 6:28

\( A=\frac{3^3}{6\cdot11}+\frac{3^3}{11\cdot16}+\frac{3^3}{16\cdot21}+....+\frac{3^3}{91\cdot96}\)

\(A=\frac{3^3}{5}\cdot\left(\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{91}-\frac{1}{96}\right)\)

\(A=\frac{27}{5}\cdot\left(\frac{1}{6}-\frac{1}{96}\right)\)

\(A=\frac{27}{5}\cdot\frac{5}{32}=\frac{27}{32}\)

Hưng
Xem chi tiết
nguyen van huy
29 tháng 7 2016 lúc 9:11

\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)

\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(\Leftrightarrow B=\frac{3}{5}.\frac{100}{101}\)

\(\Leftrightarrow B=\frac{60}{101}\)

Hưng
5 tháng 8 2016 lúc 15:48

Cảm ơn nhé

Thank you

Hưng
Xem chi tiết
Nguyễn Huy Anh
Xem chi tiết
Phương Trình Hai Ẩn
12 tháng 8 2016 lúc 7:58

\(.S=3.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\right)\)

\(\Rightarrow S=3.\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{101}\right)\)

\(\Rightarrow S=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(\Rightarrow S=\frac{3}{5}.\left(\frac{100}{101}\right)\)

\(S=\frac{60}{101}\)

Minh  Ánh
12 tháng 8 2016 lúc 7:55

\(\frac{100}{101}\)nha

bạn tự tính

tíc mình nha

giáp nguyễn ánh nguyệt
12 tháng 8 2016 lúc 8:07

S=3/1.6+3/6.11+3/11.16+...+3/96.101

=>S=1/1.6+1/6.11+1/11.16+...+1/96.101

S=1-1/6+1/6-1/11+1/11-1/16+...+1/96-1/101

S=1-1/101

S=100/101

Nguyễn Tuyết Mai
Xem chi tiết
Hồ Thu Giang
11 tháng 8 2016 lúc 22:35

\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+...+\frac{3}{96.101}\)

\(=3.\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)\)

\(=\frac{3}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)

\(=\frac{3}{5}.\left(1-\frac{1}{101}\right)\)

\(=\frac{3}{5}.\frac{100}{101}\)

\(=\frac{60}{101}\)

nam000
11 tháng 8 2016 lúc 22:31

đm dễ thế này thi tự làm đi hỏi cc

Nguyễn Trang Quyên
Xem chi tiết
lê thành long
28 tháng 3 2017 lúc 21:07

a,1/1-1/4+1/4-1/7+...+1/2008-1/2011

=(1-1/2011)+(-1/4+1/4)+...+(-1/2008+1/2008)

=1-1/2011+0+...+0

=1-1/2011

=2010/2011

Cúc Tịnh Y
Xem chi tiết
Sách Giáo Khoa
9 tháng 1 2020 lúc 21:03

\(b\)) \(Q=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)

Khách vãng lai đã xóa
Sách Giáo Khoa
9 tháng 1 2020 lúc 21:09

\(a\)) Mình giải theo cách khác:

Chú ý rằng : \(\frac{3}{2.5}=\frac{1}{2}-\frac{1}{5};\frac{3}{5.8}=\frac{1}{5}-\frac{1}{8};\frac{3}{8.11}=\frac{1}{8}-\frac{1}{11};...;\frac{3}{17.20}=\frac{1}{17}-\frac{1}{20}\)

Do đó: \(P=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

Khách vãng lai đã xóa
phuonganh do
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 18:22

Ta có : 

\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)

\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)

\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)

\(S=5\left(1-\frac{1}{26}\right)\)

\(S=5.\frac{25}{26}\)

\(S=\frac{125}{26}\)

Vậy \(S=\frac{125}{26}\)

Chúc bạn học tốt ~ 

Top 10 Gunny
12 tháng 4 2018 lúc 18:02

S=125/26

KHANH QUYNH MAI PHAM
Xem chi tiết
Phùng Quang Thịnh
12 tháng 6 2017 lúc 20:23

Câu 1:
Giả sử \(\frac{3}{5}< \frac{3+m}{5+m}\)
=) \(3.\left(5+m\right)< 5.\left(3+m\right)\)
=) \(15+3m< 15+5m\) ( Đúng vì \(15=15\)và \(3m< 5m\)) =) Điều giả sử đúng
=) \(\frac{3}{5}< \frac{3+m}{5+m}\)
* Từ điều trên ta suy ra : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Và nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Câu 2 :
\(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(5.\left(\frac{1}{1}-\frac{1}{31}\right)\)\(5.\frac{30}{31}=\frac{150}{31}\)

QuocDat
12 tháng 6 2017 lúc 20:25

=> Với mọi số tự nhiên m ( như m\(\ne\)0 ) thì \(\frac{3}{5}< \frac{3+m}{5+m}\)

\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

\(=5\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{26.31}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}\)

\(=\frac{150}{31}\)

nghia
12 tháng 6 2017 lúc 20:27

TH1:     Xét  m = 0 

     \(\Rightarrow\frac{3}{5}=\frac{3+m}{5+m}\)

TH2:    Xét  m < 0

     \(\Rightarrow\frac{3}{5}>\frac{3+m}{5+m}\)

TH3:  Xét m > 0

     \(\Rightarrow\frac{3}{5}< \frac{3+m}{5+m}\)

b)   \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

\(=\frac{5.5}{1.6}+\frac{5.5}{6.11}+\frac{5.5}{11.16}+\frac{5.5}{16.21}+\frac{5.5}{21.26}+\frac{5.5}{26.31}\)

\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}\)

\(=\frac{150}{31}\)