phân tích đa thức thành nhân tử a(b^2-c^2)-b(c^2-a^2)+c(a^2-b^2)
phân tích đa thức thành nhân tử: a(b^2-c^2)-b(a^2-c^2)+c(a^2-b^2)
\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)
\(=ab^2-ac^2-ba^2+bc^2+ca^2-cb^2\)
\(=\left(ab^2-ac^2-bc^2\right)-\left(ba^2-bc^2-ca^2\right)\)
\(=a\left(b^2-c^2\right)-bc^2-a^2\left(b-c\right)+bc^2\)
\(=a\left(b^2-c^2\right)-a^2\left(b-c\right)\)
\(=a\left(b-c\right)\left(b+c\right)-a^2\left(b-c\right)\)
\(=\left(b+c\right)\left[a\left(b-c\right)-a^2\right]\)
\(=\left(b+c\right)\left(ab-ac-a^2\right)\)
\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)
\(=c\left(a^2-b^2\right)+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)
\(=-c\left[\left(b^2-c^2\right)+\left(c^2-a^2\right)\right]+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b^2-c^2\right)+\left(b-c\right)\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b-c\right)\left(b+c\right)+\left(b-c\right)\left(c-a\right)\left(c+a\right)\)
\(=\left(a-c\right)\left(b-c\right)\left(b-a\right)\)
phân tích đa thức thành nhân tử a^2(b-c)+b^2(c-a)+c^2(a-b)
phân tích đa thức thành nhân tử
a^2(b-c)+b^2(c-a)+c^2(a-b)
= -(b-a)(c-a)(c-b)
nha bạn
a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2(a-b)
=(a2b-b2a)-(a2c-b2c)+c2(a-b)
=ab(a-b)+c(a2-b2)+c2(a-b)
=ab(a-b)+c(a-b)(a+b)+c2(a-b)
=(a-b)(ab+ac+bc+c2)
=(a-b)[(ab+bc)+(ac+c2)]
=(a-b)[b(a+c)+c(a+c)]
=(a-b)(a+c)(b+c)
câu này mới đúng, câu trên mình sai
a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2(a-b)
=(a2b-b2a)-(a2c-b2c)+c2(a-b)
=ab(a-b)-c(a2-b2)+c2(a-b)
=ab(a-b)-c(a-b)(a+b)+c2(a-b)
=(a-b)(ab-ac-bc+c2)
=(a-b)[a(b-c)-c(b-c)]
=(a-b)(a-c)(b-c)
Phân tích đa thức sau thành nhân tử: a^2 (b-c)+b^2(c-a)+c^2(a-b)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)
\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
1/ Cho a,b,c đối 1 khác nhau thỏa mãn điều kiện (a + b + c)^2 = a^2 + b^2 + c^2 (^ là mũ)
Rút gọn biểu thức: P= (a^2)/(a^2+2bc) + (b^2)/(b^2+2ac)+(c^2)/(c^2+2ab)
2/ Phân tích đa thức thành nhân tử: (x + 1)^4 + (x^2 + x +1)^2
3/ Phân tích đa thức thành nhân tử: ab(a - b) + bc(b - c) + ca(c - a)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
phân tích đa thức sau thành nhân tử (a+b)^2(a-b)+(b+c)^2(b-c)+(c+a)^2(c-a)
tk mình đi mình giải cho
Phân Tích Đa Thức thành nhân tử 3abc+a^2(a-b-c)+b^2(b-a-c)+c^2(c-a-b)-c(b-c)(a-c)
Phân tích đa thức thành nhân tử : a.(b^2+c^2)+b.(c^2+a^2)+c.(a^2+b^2)+2abc
Phân tích đa thức thành nhân tử : a.(b^2+c^2)+b.(c^2+a^2)+c.(a^2+b^2)+2abc
Phân tích đa thức thành nhân tử: 2 * (a^2 * c + b^2 * a + c^2 * b ) - ( a^2 * b + b^2*c +c^2 * a)- 3abc