Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh Tuấn
Xem chi tiết
Dương Ngọc Linh
Xem chi tiết
Xyz OLM
13 tháng 9 2020 lúc 20:54

Ta có x + y = 4

=> (x + y)2 = 16

=> x2 + y2 + 2xy = 16

=> 2xy = 6

=> xy = 3

Lại có x + y = 4

=> x(x + y) = 4x

=> x2 + xy = 4x

=> x2 - 4x = - xy

=> x2 - 4y = -3

=> x2 - 4x + 4 = 1

=> (x - 2)2 = 1

=> \(\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Khi x = 3 => y = 1

Khi x = 1 => y = 3

Vậy khi x = 3 ; y = 1=> x3 - y3 = 33 - 13 = 27 - 1 = 26

khi x = 1 ; y = 3 => x3 - y3 = 13 - 33 = 1 - 27 = -26

Vậy x3 - y3 \(\in\left\{\pm26\right\}\)

Khách vãng lai đã xóa
Phạm Thị Mai Anh
13 tháng 9 2020 lúc 20:56

Ta có :
x + y = 2
=> x = 2 - y
Thay x = 2 - y vào biểu thức : x^2 + y^2 = 10
<=> (2 - y)^2 + y^2 = 10
<=> 4 - 4y + y^2 + y^2 = 10
<=> 4 - 4y + 2y^2 = 10
<=> 2.(2 - 2y + y^2) = 10
<=> 2 - 2y + y^2 = 5
<=> y^2 - 2y - 3 = 0
<=> y^2 + y - 3y - 3 = 0
<=> y.(y + 1) - 3.(y + 1) = 0
<=> (y - 3).(y + 1) = 0
<=> y = 3 hoặc y = -1
TH1 : y = 3 => x = - 1
Thay vào biểu thức x^3 + y^3
= - 1 + 3^3 = 26
TH2 : y = - 1 => x = 3
Thay vào biểu thức x^3 + y^3 
= 3^3 - 1 = 26
Vậy giá trị của biểu thức :
x^3 + y^3 = 26

Khách vãng lai đã xóa
Hoàng Trang
Xem chi tiết
Phước Nguyễn
2 tháng 11 2015 lúc 17:25

Do \(x+y=4\)

nên \(\left(x+y\right)^2=x^2+2xy+y^2=16\)

Mà \(x^2+y^2=10\)

\(\Rightarrow xy=\frac{16-10}{2}=3\)

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)=4\left(10+3\right)=52\)

 

Nguyễn Linh Anh
Xem chi tiết
Đoàn Đức Hà
27 tháng 6 2021 lúc 22:05

a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)

b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)

Khách vãng lai đã xóa
Trần Mai Trang
Xem chi tiết
Transformers
Xem chi tiết
fan FA
17 tháng 8 2016 lúc 15:28

1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải

(x+y)^2=x^2+y^2+2xy => xy= -3 
x^3+y^3=(x+y)^3-3xy(x+y) = 26

2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)

(x+y)^2=a^2

=> x^2 +2xy +y^2=a^2

=> b+2xy=a^2

=> xy=\(\frac{a^2-b}{2}\)

Thay (1) vào đó ta có:

x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)

Nguyen Duc Thang
17 tháng 8 2016 lúc 15:21

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)

Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)

Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)

Nguyen Duc Thang
17 tháng 8 2016 lúc 15:26

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(b-xy\right)\)

Nguyen Minh Hieu
Xem chi tiết
Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 7:43

\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)

Lê Thị Bích Chăm
Xem chi tiết
Monkey D Luffy
15 tháng 7 2016 lúc 18:06

Từ x + y = 4 và x2 + y2 = 10 ta suy ra được x = 3 và y = 1 (hoặc ngược lại)

Thay số vào, ta có:

33 + 13 = 27 + 1 = 28

ĐS: 28