Cho A= 1+2+2^2+2^3+...+2^99
a) Chứng minh: A chia hết cho 3
b) Chứng minh: A chia hết cho 5
1/Cho A=120a+36b.Chứng minh A chia hết 12.
2/Cho(2a+7b) chia hết 3.Chứng minh (4a+2b) chia hết cho 3.
3/Cho (a+b) chia hết 2.Chứng Minh (a+3b) chia hết cho2.
1) A = 120a + 36b
=> A = 12.10.a + 12.3.b
=> A = 12.(10a+3b)
Do 12.(10a+3b) \(⋮\)12
nên 120a+36b \(⋮\)12
2) Gọi (2a+7b) là (1)
(4a+2b) là (2)
Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)
Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3
Hay 4a+2b chia hết cho 3
3) Gọi (a+b) là (1)
(a+3b) là (2)
Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2
Hay (a+3b) chia hết cho 2
1 ) A = 3 + 3^2 + 3^3 +...+ 3^2007 + 3^2008. Chứng minh A chia hết cho 4
2 ) ( a + b ) chia hết cho 2,Chứng minh ( a + 3b ) chia hết cho 2
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
1 ) A = 3 + 3^2 + 3^3 +...+ 3^2007 + 3^2008. Chứng minh A chia hết cho 4
2 ) ( a + b ) chia hết cho 2,Chứng minh ( a + 3b ) chia hết cho 2
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
A = 2+22+23+....+220 .
CHỨNG MINH RẰNG :
a) A chia hết cho 3
b) A chia hết cho 5
a) \(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=2\cdot\left(1+3\right)+2^3\cdot\left(1+3\right)+...+2^{59}\cdot\left(1+3\right)\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy A chia hết cho 3
________
\(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A chia hết cho 5
chứng minh rằng nếu (a+b)chia hết cho 2 thì (a+3b) chia hết cho 2 và (5a+11b)chia hết cho 2
Cho a+b chia hết cho 2.Chứng minh rằng a+3b chia hết cho 2
Ta có:
\(\hept{\begin{cases}a+b⋮2\\2b⋮2\end{cases}}\Rightarrow a+b+2b⋮2\Rightarrow a+3b⋮2.\)
Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
a) a lẻ suy ra a+5 chia hết cho 2
a chẵn suy ra a+8 chia hết cho 2
cho a + b chia hết cho 2 với a,b E N
hãy chứng minh ( a+ 3b) chia hết cho 2
Vì a + b chia hết cho 2, ta có thể viết a + b = 2k, với k là một số nguyên.
Tương tự, ta có 3b = 2m, với m là một số nguyên. Khi đó, ta có:
a + 3b = 2k + 2m = 2(k + m).
Vì k + m cũng là một số nguyên, nên ta kết luận rằng (a + 3b) chia hết cho 2.
Vậy, đáp án đúng là (a + 3b) chia hết cho 2.
Câu 1 : Cho a,b là 2 số TN chia hết cho 3 . Khi chia cho 3 đc số dư là khác nhau . Chứng minh a+b chia hết cho 3
Câu 2 : cho a+b chia hết cho 2 . chứng minh a+3b chia hết cho 2
GIÚP MK VS MAI MK PHẢI NỘP RÙI
CÁC BN LÀM THEO CÁCH LỚP 6 NHÉ
THANKS CÁC BN
1 /
a chia hết cho 3 , b cũng vậy .
phân tích ra
các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3 .
bất kì 2 số cùng chia hết cho một số thì tổng cũng chia hết cho nó .
vậy a + b chia hết cho 3 .
ví dụ : a = 15 , b = 12
tổng : 15 + 12 = 27 chia hết cho 3
2 /
a là số chia hết cho 2 , b cũng vậy .
phân tích ra
các số có tận cùng là chẵn thì chia hết cho 2 và chỉ có những số đó mới chia hết cho 2 .
bao nhiêu lần số chia hết cho 2 cũng là số chẵn , mà số chẵn chi hết cho 2
nên a + 3 lần b chia hết cho 2 .
ví dụ : a = 2 , b = 4
tổng : 2 + 4 x 3 = 14 chia hết cho 2
nhé !
Vì số dư khác nhau mà chia cho 3 nên phải là 1 và 2.
Vì số dư là 1 cần cộng thêm 2 mới chia hết cho 3.
Vì số dư là 2 cần cộng thêm 1 mới chia hết cho 3.
Và 2 số đều có số dư là 1,2 nên sẽ chia hết cho 3.