Cho nửa đường tròn ( O) bán kính AB = 2R và ta tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB . Từ M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn ( C là tiếp điểm )
a) CM AMCO và AMDE nội tiếp
b) ADE = ACO
CHo nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.TỪ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm).AC cắt OM tại E;MB cắt nửa (O) tại D (D khác B)
a/AMCO và AMDE là các tứ giác nội tiếp
b/MNCD là tứ giác nội tiếp
cho nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm ).AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a, chứng minh AMDE nội tiếp đường tròn.
b, MA^2=MD.MB
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
a: Xét (O) có
MA.MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADB=1/2*180=90 độ
=>góc ADM=90 độ=góc AEM
=>AMDE nội tiếp
b: AMDE nội tiếp
=>góc ADE=góc AMO=góc ACO
Câu 3: Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa
đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMCO và AMDE là các tứ giác nội tiếp đường tròn.
b) Chứng minh .
c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH.
a: góc MAO+góc MCO=180 độ
=>MAOC nội tiếp
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADM=góc AEM=90 độ
=>AEDM là tứ giác nội tiếp
Cho nửa đường tròn tâm \(O\), đường kính \(AB\) và tia tiếp tuyến \(Ax\) cùng phía với nửa đường tròn đối với \(AB\). Từ điểm \(M\) trên \(Ax\) kẻ tiếp tuyến thứ hai \(MC\) với nửa đường tròn (\(C\) là tiếp điểm). Kẻ \(CH\) vuông góc với \(AB\) \(\left(H\in AB\right)\). Chứng minh rằng:
\(a\)) \(\widehat{ACB}=90^o\)
\(b\)) \(BC//OM\)
\(c\)) \(MB\) đi qua trung điểm của đoạn thẳng \(CH\).
Cho nửa đường tròn (O) đường kính AB=2R. Trên nửa mặt phẳng chứa nửa đường tròn (O) có bờ là AB. Vẽ tiếp tuyến Ax, từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn ( D khác B).
a. CMR: AMDE nội tiếp đường tròn.
b. CMR: MA.MA=MD.MB
c. Vẽ CH vuông góc với AB (H thuộc AB). CMR: MB đi qua trung điểm CH
Bài 5. ( 3,0 điểm ) Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng chia với nửa đường tròn đối với AB . Tử điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn ( C là tiếp điểm ) . AC cắt OM tại E ; MB cắt nửa đường tròn 0 tại D ( D khác B ) . a ) Chứng minh : A M co và A M DE là các tứ giác nội tiếp đường tròn . b ) Ching minh gócADE = gócACO DEC = DAB . c ) Vẽ CH vuông góc với AB . Chứng minh rằng MB đi qua trung điểm của CH
a) Xét tứ giác AMCO có
\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối
\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AMCO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét (O) có
\(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)
hay AD\(\perp\)MB tại D
Xét (O) có
MA là tiếp tuyến có A là tiếp điểm(gt)
MC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: MA=MC(cmt)
nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OA=OC(=R)
nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra MO là đường trung trực của AC
hay MO\(\perp\)AC tại E
Xét tứ giác AMDE có
\(\widehat{ADM}=\widehat{AEM}\left(=90^0\right)\)
\(\widehat{ADM}\) và \(\widehat{AEM}\) là hai góc cùng nhìn cạnh AM
Do đó: AMDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
cho nửa (O) đường kính AB= 2R và tia tiếp tuyến Ax cùng phía vối nửa đường tròn đối với AB . từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm ) .AC cất OM tại E ; MBcats nửa đường tròn tâm O tại D ( D khác B ) . vẽ CH vuông góc với AB (H thuộc AB ) cmr MB đi qua trung điểm của CH
a) Vì MA, MC là tiếp tuyến nên: ˆMAO=ˆMCO=900⇒MAO^=MCO^=900⇒ AMCO là tứ giác nội tiếp đường tròn đường kính MO.
ˆADB=900ADB^=900 góc nội tiếp chắn nửa đường tròn) ⇒ˆADM=900⇒ADM^=900 (1)
Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến). Suy ra OM là đường trung trực của AC
⇒ˆAEM=900⇒AEM^=900 (2).
Từ (1) và (2) suy ra MADE là tứ giác nội tiếp đường tròn đường kính MA.
b) Tứ giác AMDE nội tiếp suy ra: ˆADE=ˆAME=ˆAMOADE^=AME^=AMO^ (góc nội tiếp cùng chắn cung AE) (3)
Tứ giác AMCO nội tiếp suy ra: ˆAMO=ˆACOAMO^=ACO^(góc nội tiếp cùng chắn cung AO) (4).
Từ (3) và (4) suy ra ˆADE=ˆACOADE^=ACO^
c) Tia BC cắt Ax tại N. Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ⇒ˆACN=900⇒ACN^=900, suy ra ∆ACN vuông tại C. Lại có MC = MA nên suy ra được MC = MN, do đó MA = MN (5).
Mặt khác ta có CH // NA (cùng vuông góc với AB) nên theo định lí Ta-lét thì ICMN=IHMA(=BIBM)ICMN=IHMA(=BIBM) (6).
Từ (5) và (6) suy ra IC = IH hay MB đi qua trung điểm của CH.
Để giải quyết bài toán này, ta sử dụng định lí Menelaus và định lí Stewart.
Bước 1: Chứng minh AD/AC + AM/AN = 3.
Áp dụng định lí Menelaus cho tam giác AGC với đường thẳng cắt AC, ID, MG, ta có:
$\dfrac{IM}{MD} \cdot \dfrac{DN}{NC} \cdot \dfrac{CG}{GA} = 1$
Do $CG = 2 \cdot GA$ và $DN = AN - AD = AN - 2\cdot AI$, ta có thể đưa về dạng:
$\dfrac{IM}{MD} \cdot \dfrac{AN-2\cdot AI}{NC} = \dfrac{1}{2}$
Từ định lí Stewart, ta có $4\cdot AI\cdot DI + AD^2 = 3\cdot ID^2$, do đó $ID = \dfrac{AD}{\sqrt{3}}$.
Thay vào phương trình trên, ta được:
$\dfrac{IM}{MD} \cdot \dfrac{AN-AD}{NC} = \dfrac{1}{\sqrt{3}}$
Tương đương với:
$\dfrac{IM}{MD} \cdot \dfrac{AD}{NC} + \dfrac{IM}{MD} \cdot \dfrac{AM}{AN} = \dfrac{1}{\sqrt{3}} + \dfrac{AD}{NC}$
Từ đó suy ra:
$\dfrac{AM}{AN} + \dfrac{AD}{AC} = \dfrac{3}{\sqrt{3}}$
Do đó:
$\dfrac{AD}{AC} + \dfrac{AM}{AN} = 3$ (Đpcm)