B7: Tỉ số giữa một cạnh góc vuông với cạnh huyền là 2/7. Tính các góc còn lại của tam giác
Cho tam giác abc có góc a bằng 90 độ. biết tỉ số giữa cạnh góc vuông và cạnh Huyền là 4:5. Cạnh góc vuông còn lại bằng 9 dm. tính các cạnh còn lại của tâm giác.
Tỉ số giữa cạnh huyền và một cạnh góc vuông của một tam giác vuông là 13/12, cạnh góc vuông còn lại bằng 15 cm. Tìm độ dài cạnh huyền.
Gọi độ dài của tam giác vuông là x. Điều kiện x > 0.
Tỉ số giữa cạnh huyền và một cạnh góc vuông sẽ là x/15.
Theo bài ra ta có :
x/15=13/12 (=) 12x=13*15 (=) 12x = 195 (=) x=16,25
Vậy độ dài cạnh huyền là 16,25 cm
đoán sai, cách giải đây
gọi c là cahj huyền, a là cạch góc vuong chưa biết, c là cạnh góc vuông đã biết (15)
ta có c/a = 13/12 => a/c = 12/13 => a^2/c^2 = 144/169 (10)
mà c^2 = a^2+b^2 (định lý pytago) (2)
từ (1) và (2) suy ra b^2/c^2 = c^2/c^2-a^2/c^2 = 25/169 => b/c = 5/13
=> c = b.13:5 = 39 cm
Bài 1.
a) Tính độ dài cạnh huuyền của một tan giác vuông cân biết cạnh góc vuông bằng 2dm.
b) Tính độ dài cạnh góc vuông của một tam giác vuông cân biết cạnh huyền bằng 2m.
Bài 2. Cho tam giác ABC , biết tỉ số giữa cạnh góc vuông và cạnh huyền là 4:5, cạnh góc vuông còn lại bằng 9cm. Tính các cạnh còn lại của tam giác.
Cho tam giác ABC vuông cân tại A tỉ số giữa các cạnh goác vuông và cạnh huyền là 5;4 cạnh góc vuông còn lại là 9 cm. Tính các cạnh tam giác
giải giúp mình với. thank you
Biết tỉ số các cạnh góc vuông của một tam giác vuông là 3:7 ; đường cao ứng với cạnh huyền là 12cm. Tính độ dài hình chiếu của mỗi cạnh góc vuông lên cạnh huyền
1) Một tam giác vuông có canh huyền là 5 và đường cao ứng với cạnh huyền là 2. Hãy tính cạnh nhỏ nhất của tam giác vuông này.
2) Cho một tam giác vuông. Biết tỉ số hai cạnh góc vuông là 3:4 và cạnh huyền là 125 cm. Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền.
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
1) Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Biết tỉ số hai cạnh góc vuông của một tam giác vuông là 3 : 7 , đường cao ứng với cạnh huyền là 42 cm . Tính độ dài hình chiếu của các cạnh góc vuông trên cạnh huyền . Help me plz
Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`, đường cao `AH`.
Có: `(AB)/(AC)=3/7 = (3x)/(7x) (x>0)`
Áp dụng hệ thức lượng trong tam giác vuông ABC:
`1/(AH^2)=1/(AB^2)+1/(AC^2)`
`<=>1/(42^2)=1/(9x^2)+1/(49x^2)`
`=> x=2\sqrt58(cm)`
`=> AB=6\sqrt58, AC=14\sqty58 (cm)`
Áp dụng định lí Pytago:
`AB^2=HB^2+AH^2`
`<=> (6\sqrt58)^2=HB^2+42^2`
`=> HB=18(cm)`
`=> HC = AH^2 : HB = 98(cm)`
Vậy `HB=18cm, HC=98cm`.
Tỉ số giữa hai cạnh góc vuông là 3:4. Đường cao ứng với cạnh huyền là 24cm. Tính các cạnh góc vuông của tam giác.
Gọi cạnh góc vuông lần lượt là 3x và 4x
Cạnh huyền của tam giác vuông là : \(\sqrt{\left(3x\right)^2+\left(4x\right)^2}=\sqrt{25x^2}=5x\)
Đường cao ứng với cạnh huyền là : \(\frac{3x\times4x}{5x}=\frac{12x}{5}=24cm\)nên \(x=10cm\)
Vậy ta có 3 cạnh của tam giác vuông là 30cm 40cm và 50cm