bài 1:Tính nhanh
\(\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{89.90}\)
Tính nhanh
\(B=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
\(B=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{3}-\frac{1}{10}\)
\(B=\frac{7}{30}\)
Bài: tính
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
= 1/2-1/3+ 1/3 -1/4 +... +1/99-1/100
=1/2-1/100
=50/100 - 1/100= 49/100
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Tham khảo nha !!!
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)
tính
\(B=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
ai nhanh tik luôn
\(B=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
\(\Rightarrow B=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{4}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\frac{6}{40}\)
\(\Rightarrow B=\frac{-1}{15}\)
1/2.3 + 1/3.4 + 1/4.5 +...+ 1/89.90
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{89\cdot90}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{89}-\dfrac{1}{90}\\ =\dfrac{1}{2}-\dfrac{1}{90}=\dfrac{22}{45}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{89.90}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{89}-\dfrac{1}{90}\\ =\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{89}-\dfrac{1}{89}\right)-\dfrac{1}{90}\\ =\dfrac{1}{2}-0-0-...-0-\dfrac{1}{90}\\ =\dfrac{1}{2}-\dfrac{1}{90}\\ =\dfrac{45}{90}-\dfrac{1}{90}\\ =\dfrac{44}{90}\\ =\dfrac{22}{45}\)
Ta có:
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{89\cdot90}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...-\dfrac{1}{89}+\dfrac{1}{90}\)
\(=\dfrac{1}{2}+\dfrac{1}{90}\)
\(=\dfrac{23}{45}\)
Tính\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6
1/1 - 1/2+1/2 -1/3+1/3 - 1/4+1/4 - 1/5+1/5 - 1/6
=1-( -1/2+1/2+-1/3+1/3+-1/4+1/4+-1/5+1/5)-1/6
=1 - 1/6
=6/6 - 1/6
=5/6
Bài 1. Tính nhanh nếu có thể:
A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100
B = \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+ ... +\(\frac{1}{99.100}\)
bài A: áp dụng công thức: 1 + 2 + 3 + ... + n = n x (n + 1) : 2 tính được 5050
bài B: áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rồi triệt tiêu gần hết, qui đồng mẫu số tính được B = 99/100
A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100
= ( 100 + 1 ) x 100 : 2 = 5050
Vậy A = 5050
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
Học tốt #
Tổng A = (101/2)*100=5050 (trung bình cộng * số số hạng)
Tổng B = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
Tính
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{10}\)
\(=\frac{1}{10}\)
(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-......+1/9-1/10)
1-1/10=9/10
nhớ cho mk
Tính:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
\(=\frac{1}{1.2}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{1.2}+\left(\frac{1}{3}-\frac{1}{100}\right)\)
\(=\frac{1}{1.2}+\frac{97}{300}=\frac{247}{300}\)
\(\text{Vậy }\)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{247}{300}\)
\(\frac{1}{1.2}\)+(\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{99.100}\))
\(\frac{1}{1.2}\)+(\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\))
\(\frac{1}{2}\)+\(\frac{1}{3}-\frac{1}{100}\)
=\(\frac{1}{2}+\frac{97}{300}\)
=\(\frac{247}{300}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\) . Tính
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
\(=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)