chung minh 2x^2+2xy+4x+y^2+8>0 voi moi x,y
4x(x+y)(x+y+z)(x+z)+y^2z^2 chung minh luon luon >= 0 voi moi x,y,z
4x(x+y)(x+y+z)(x+z) + y^2.z^2
= 4(x^2 + xy + xz)( x^2 + xy + xz + yz) + y^2.z^2
Đặt x^2 + yz + xz = t
=> 4x(x+y)(x+y+z)(x+z) + y^2.z^2 = 4t( t + yz) + y^2.z^2 = 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0(ĐPCM)
Vậy 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0 với moji x,y,z
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)
không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .
chung minh rang : x2 + y2 _ 4x+2y+7>0 voi moi so thuc x,y
Ta có x2+y2-4x+2y + 7
= ( x2 -4x+2) + ( y2+2y+1)+4
= ( x-2)2 +( y+1)2 +4
Ta có ( x-2)2 >=0 và ( y+1)2 >=0
<=> ( x-2)2 +( y+1)2 +4>=4
vậy x2+y2-4x+2y + 7>=0
Chung minh rang x2+5xy+2x-4xy-10y+14 >0 voi moi x,y
Bạn hãy viết lại đề bài đi mình trông ngộ ngộ kiểu j đấy
4x(x+y)(x+y+z)(x+z)+y^2z^2 chung minh luon luon >= 0 voi moi x,y,z
moi nguoi ghi ro chi tiet tung cach lam nhja ^^ khong skip buoc nao
tks mn a
Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)
\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)
Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)
Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)
\(=4a^2+4ab+b^2\)
\(=\left(2a+b\right)^2\)
\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)
=> đpcm
Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)
Chung minh bieu thuc Q=(x^4*y^n+1-1/2*x^3*y^n+2):1/2x^3*y^n-20x^4*y:5*xy^2 (n thuoc N) luon <0 voi moi gia tri x khac 0,y khac 0
4x(x+y)(x+y+z)(x+z)+y^2z^2 chung minh luon luon >= voi moi x,y,z
\(\ge\)bao nhiêu
BAI 1.phan tich cac da thuc sau thanh nhan tu:
a,2x^2-2xy-5x+5y
b,8x^2+4xy-2ax-ay
c,x^3-4x^2+4x
d,2xy-x^2-y^2+16
e,x^2-y^2-2yz-z^2
g,3a^2-6ab+3b^2-12c^2
BAI 2.tinh nhanh
a,37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5
b,35^2+40^2-25^2+80.35
BAI 3. Tim x biet:
a,x^3-1/9x=0
b,2x-2y-x^2+2xy-y^2=0
c,x(x-3)+x-3=0
d,x^2(x-3)+27-9x=0
BAI 4.Phan tich cac da thuc sau thanh nhan tu
a,x^2-4x+3
goi y :tach-4x=-x3xhoac tach3=-1+4
b,x^2+x-6
c,x^2-5x+6
d,x^4+4 (goi y:them va bot 4x^2)
BAI 5.Chung minh rang;
(3n+4)^2-16 chia het cho 3 voi moi so nguyen n.
BAI 6.Tinh gia tri cua bieu thuc sau:
M=a^3-a^2b-ab^2+b^3 voi a=5,75:b=4,25
BAI 7.Tim x biet:
a,x^2+x=6
b,6x^3+x^2=2x
Bài 1 câu g bạn kia làm sai mình sửa lại nhá
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2\right)-12c^2\)
\(=3\left(a-b\right)^2-12c^2\)
\(=3\left[\left(a-b\right)^2-4c^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Để mình làm tiếp cho :))
Bài 2 :
Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)
\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)
\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)
\(=37,5.10-7,5.10\)
\(=10.30=300\)
Câu b : \(35^2+40^2-25^2+80.35\)
\(=\left(35^2+80.35+40^2\right)-25^2\)
\(=\left(30+45\right)^2-25^2\)
\(=75^2-25^2\)
\(=\left(75+25\right)\left(75-25\right)\)
\(=100.50=5000\)
Bài 3 :
Câu a : \(x^3-\dfrac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)
Câu b : \(2x-2y-x^2+2xy-y^2=0\)
\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)
Câu c :
\(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(x^2\left(x-3\right)+27-9x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)
Bài 4 :
Câu a :
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=\left(x^2-x\right)-\left(3x-3\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
Câu b :
\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
Câu c :
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
Câu d :
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
Bài 1:
a) \(2x^2-2xy-5x+5y\)
\(=\left(2x^2-2xy\right)-\left(5x-5y\right)\)
\(=2x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(2x-5\right)\)
b) \(8x^2+4xy-2ax-ay\)
\(=\left(8x^2+4xy\right)-\left(2ax+ay\right)\)
\(=4x\left(2x+y\right)-a\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x-a\right)\)
c) \(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
d) \(2xy-x^2-y^2+16\)
\(=-\left[\left(x^2-2xy+y^2\right)-16\right]\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left[\left(x-y-4\right)\left(x-y+4\right)\right]\)
e) \(x^2-y^2-2yz-z^2\)
\(=-\left[\left(z^2+2yz+y^2\right)-x^2\right]\)
\(=-\left[\left(z+y\right)^2-x^2\right]\)
\(=-\left[\left(z+y+x\right)\left(z+y-x\right)\right]\)
g) \(3a^2-6ab+3b^2-12c^2\)
\(=\left(3a^2-6ab+3b^2\right)-12c^2\)
\(=\left(\sqrt{3a}+\sqrt{3b}\right)^2-12c^2\)
\(=\left(\sqrt{3a}+\sqrt{3b}+\sqrt{12c}\right)\left(\sqrt{3a}+\sqrt{3b}-\sqrt{12c}\right)\)