Tim các số tự nhiên n sao cho 4n+5 và 9n+7 đều là các số chính phương
Tìm tất cả các số tự nhiên n để 4n + 5 và 9n + 7 đều là các số chính phương.
-Vì 4n+5, 9n+7 đều là các số chính phương nên đặt \(4n+5=a^2;9n+7=b^2\)
\(\Rightarrow9\left(4n+5\right)=9a^2;4\left(9n+7\right)=4b^2\)
\(\Rightarrow36n+45=9a^2;36n+28=4b^2\)
\(\Rightarrow9a^2-4b^2=36n+45-\left(36n+28\right)=17\)
\(\Rightarrow\left(3a-2b\right)\left(3a+2b\right)=1.17\)
-Vì \(3a-2b< 3a+2b\)
\(\Rightarrow\left[{}\begin{matrix}3a-2b=1\\3a+2b=17\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)
-Vậy \(n=1\) thì 4n+5 và 9n+7 là các số chính phương.
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương
Cho n là số tự nhiên có 1 chữ số. tìm n biết n + 5 và 4n đều là các số chính phương
tim số tự nhiên n sao cho n+19 và n-57 đều là các số chính phương
Đặt \(\hept{\begin{cases}n+19=t^2\\n-57=k^2\end{cases}\left(t,k\in N\right)\Rightarrow\left(n+19\right)-\left(n-57\right)=t^2-k^2\Rightarrow}76=\left(t-k\right)\left(t+k\right)\)
Ta có: \(76=1.76=2.38=4.19\)
Mà t - k và t + k là 2 số cùng tính chẵn lẻ, \(t-k< t+k\)
Nên \(\hept{\begin{cases}t-k=2\\t+k=38\end{cases}\Rightarrow t=\left(2+38\right):2=20}\)
Ta có: \(n+19=t^2\)
Thay t = 20, tính được n = 381
Chúc bạn học tốt.
Tìm các số tự nhiên n thỏa mãn 3n+1 và 4n+1 đều là các số chính phương và 8n + 3 là số nguyên tố
Chứng minh rằng : Nếu m, n là các số tự nhiên thỏa mãn 3m2 + m = 4n2 + n thì m - n và 4m + 4n + 1 đều là số chính phương.
3m2+m=4n2+n
=>(m-n)(4m+4n+1)=m2(1)(phân tích ra là về cái ban đầu nhé)
Gọi d là 1 ước chung của m-n và 4m+4n+1
=>(m-n)(4m+4n+1) chia hết cho d.d=d2
Từ (1) =>m2 chia hết cho d2
=>m chia hết cho d
Mà m-n cũng chia hết cho d => n chia hết cho d
=>4m+4n+1 chia d dư 1(vô lí vì d được giả sử là ước của 4m+4n+1)
=>4m+4n+1 và m-n nguyên tố cùng nhau
khi phân tích a hoặc b có thừa số nguyên tố p với mũ lẻ mà 2 số này nguyên tố cùng nhau nên số còn lại không chưa p =>m2 bằng tích của p với 1 số khác p.Mà m2 là số chính phương nên điều trên là vô lí
=>m-n và 4m+4n+1 phải cùng là số chính phương(ĐPCM)
Hơi khó hiểu nhưng đúng đó Đây là mình cố giải thích cho bạn chứ thực ra k có dòng giải thích dài dài kia đâu
cmr 2018^4n+2019^4n+2020^4n ko phải là số chính phương với mọi số nguyên n
tìm số nguyên n sao cho 1955+n và 2014+n là số chính phương
tìm số tự nhiên n sao cho 2^n +9 là số chính phương
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
Tìm tất cả các số tự nhiên n sao cho các số n-50 và n + 50 đều là các số chính phương
Mik rất muốn giúp bạn nhưng bài này thật sự rất khí, rất rất khó luôn. Từ khi biết đc câu hỏi này của bạn là mik hỏi đông hỏi tây, hỏi thầy cô, bạn bè nhưng kết quả lại là.............. ai cũng chịu
Thế nha! Sorry bạn nhìu lắm. Mik là bạn của bn mà lại ko giúp bạn đc