Tìm các cặp số (x,y) để thỏa mãn điều kiện sau:
x(x+y)=1/48 và y(y+x)=1/24
1) Tìm các số a,b thỏa mãn trong các điều kiện sau:
a + b = | b | - | a |
2) Có bao nhiêu cặp số nguyên (x,y) thỏa mãn một trong các điều kiện sau:
| x | + | y | = 20
| x | + | y | < 20
(Các cặp số (3 ; 4) và (4 ; 3) là hai cặp số khác nhau).
tìm các cặp số nguyên (x;y) thỏa mãn các điều kiện sau
x+y=4
/2x+1/+/y-x/=5
có bao nhiêu cặp số tự nhiên (x,y) thỏa mãn điều kiện sau: 1/x + 1/y= 1/24
có bao nhiêu cặp số tự nhiên x;y thỏa mãn điều kiện sau ;
1/x + 1/y= 1/24
Có bao nhiêu cặp số tự nhiên (x, y) thỏa mãn điều kiện sau:
1/x+1/y=1/24
Từ đẳng thức:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{24}\)
ta tính một biến theo biến còn lại:
\(\frac{1}{x}=\frac{1}{24}-\frac{1}{y}=\frac{y-24}{24y}\)
\(\Rightarrow x=\frac{24y}{y-24}\)
Do x là số tự nhiên khác 0 nên y - 24 > 0 , đặt y - 24 = k (để cho mẫu số vế phải là đơn thức). Khi đó:
y = 24 + k
\(x=\frac{24.\left(24+k\right)}{k}=24+\frac{24.24}{k}\)
Vậy để x và y là các số tự nhiên thì k là ước số của 24.24. Ta có 24.24 = (23.3)(23.3) = 26.32 nên 24.24 có (6 + 1)(2 + 1) = 21 ước.
Với mỗi giá trị của k là ước của 24.24 ta tính được một bộ (x, y) theo công thức trên.
ĐS: có 21 cặp số tự nhiên thỏa mãn điều kiện đã cho.
Hai số x và y thỏa mãn điều kiện và x + y = -16 là: A. x = 48; y = 90 B. x = -6; y = 10 C. x = 24; y = 40 D. x = -6; y = -10
Tìm các cặp số thực(x;y)sao cho x và y thỏa mãn đồng thời hai điều kiện: x=x mũ2+y mũ2 và y=2xy
Tìm các cặp số thực (x;y) sao cho x và y thỏa mãn đồng thời hai điều kiện: x=x^2+y^2; y=2xy.
1 Tìm giá trị nhỏ nhất của bểu thức \(C=\frac{6}{\left|x\right|-3}\) với x là số nguyên
2 . Tìm giá trị lớn nhất của biểu thức x-|x|
3 . Tìm các số a và b thỏa mãn một điều trong các điều kiện sau :
a ) a+b = |a| + |b|
b ) a+b = |b| - |a|
4 . Có bao nhiêu cặp số nguyên (x;y) thỏa mãn một trong các điều kiện sau :
a ) |x| + |y| = 20
b) |x| + |y| <20
( Các cặp số (3;4) và (4;3) là 2 cặp số khác nhau )
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
Còn một bài : Tìm GTNN của biểu thức A=2|3x-1| -4
Vì |3x-1| \(\ge0\)
\(\Rightarrow2\left|3x-1\right|\ge0\forall x\) cái này là timg GTNN mà giờ lại lớn hơ hoặc bằng 0 ạ