Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
╚»✡╚»★«╝✡«╝
Xem chi tiết
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 9 2023 lúc 20:07

a: Bảng biến thiên:

Đồ thị:

b: Bảng biến thiên:

Đồ thị: 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2019 lúc 2:57

Tập xác định của hàm số là D = R. Ngoài ra

     f ( - x )   =   ( - x ) 2   -   2 | - x |   +   1   =   x 2   -   2 x   +   1

    Hàm số là hàm số chẵn. Đồ thị của nó nhận trục tung làm trục đối xứng. Để xét chiều biến thiên và vẽ đồ thị của nó chỉ cần xét chiều biến thiên và vẽ đồ thị của nó trên nửa khoảng [ 0 ;   + ∞ ) , rồi lấy đối xứng qua Oy. Với x ≥ 0 có f ( x )   =   x 2   -   2 x   +   1

    Bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Đồ thị của hàm số đã cho được vẽ ở hình 40.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 12:32

Ta có thể viết

Giải sách bài tập Toán 10 | Giải sbt Toán 10

và đồ thị của hàm số y = x + |x| được vẽ trên hình 34.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Hoàng Yến Nghiêm
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 23:16

b: 

x-∞1+∞
y+∞0+∞

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 8 2018 lúc 9:17

y = –x2 + x – 1

+ Tập xác định R

+ Đỉnh A(1/2 ; –3/4).

+ Trục đối xứng x = 1/2.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung: B(0; –1).

Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/2 là C(1 ; –1).

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số :

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2019 lúc 6:47

y = 2x2 + x + 1

+ Tập xác định: R

+ Đỉnh A(–1/4 ; 7/8).

+ Trục đối xứng x = –1/4.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung B(0; 1).

Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

 

Xiu Beo
Xem chi tiết
Hoang
Xem chi tiết