Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Trang Nhunh
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết
Trí Tiên亗
8 tháng 2 2020 lúc 15:58

\(\frac{x}{2008}+\frac{x+1}{2009}+...+\frac{x+4}{2012}=5\)

\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+...+\left(\frac{x+4}{2012}-1\right)=0\)

\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+...+\frac{x-2008}{2012}=0\)

\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)=0\)

Mà \(\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)\ne0\)

Nên \(x-2008=0\)

\(\Leftrightarrow x=2008\)

Vậy : \(x=2008\)

Khách vãng lai đã xóa
Chu Công Đức
8 tháng 2 2020 lúc 16:06

\(\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}=5\)

\(\Leftrightarrow\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}-5=0\)

\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+\left(\frac{x+2}{2010}-1\right)+\left(\frac{x+3}{2011}-1\right)+\left(\frac{x+4}{2012}-1\right)=0\)

\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+\frac{x-2008}{2010}+\frac{x-2008}{2011}+\frac{x-2008}{2012}=0\)

\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)=0\)

Vì \(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\ne0\)

\(\Rightarrow x-2008=0\)\(\Leftrightarrow x=2008\)

Vậy \(x=2008\)

Khách vãng lai đã xóa
ngô Tiến Dũng
Xem chi tiết
Vũ Thị Thương 21
Xem chi tiết
Lan_ Trần Ciu
Xem chi tiết
Lê Trung Hiếu
Xem chi tiết
Yen Nhi
2 tháng 3 2022 lúc 21:34

`Answer:`

\(\left(\frac{x+1}{2013}\right)+\left(\frac{x+2}{2012}\right)+\left(\frac{x+3}{2011}\right)=\left(\frac{x+4}{2010}\right)+\left(\frac{x+5}{2009}\right)+\left(\frac{x+6}{2008}\right)\)

\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x+4}{2010}+1+\frac{x+5}{2009}+1+\frac{x+6}{2008}+1\)

\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=\frac{x+2014}{2010}+\frac{x+2014}{2009}+\frac{x+2014}{2008}\)

\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2010}-\frac{x+2014}{2009}-\frac{x+2014}{2008}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

\(\Rightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

Khách vãng lai đã xóa
Triệu Bảo Thư
Xem chi tiết

A = 12 - 22 + 32 - 42 + 52 - 62 + 72 - .......- 582 + 592

A =  12 + ( 32 - 22) + ( 52 - 42) + (72 - 62) +....+ ( 592 - 582)

A  =  1 +   ( 3-2)(2+3) + (5-4)(4+5) + (7-6)(6+7)+....+(59-58)(58+59)

A  =  1 + 2 + 3 + 4 + 5 + 6 + 7 + ....+ 58 + 59

A = ( 59 + 1).{ (59 - 1): 1 + 1 } : 2 

A = 1770

B =  \(\dfrac{2^{2016}-2^{2015}+2^{2014}-2^{2013}+2^{2012}-2^{2011}+2^{2010}-2^{2009}}{2^{2008}}\)

Đặt tử số là A 

ta có

  A =           22016 - 22015+22014 -  22013 + 22012 - 22011 + 22010- 22009

2 A= 22017- 22016 + 22015- 22014 +22013-22012 + 22011 - 22010 

2A + A = 22017 - 22009

       3A = 22017 - 22009

         A = (22017 - 22009):3

B = A : 8 = (22017- 22009) : 3 : 8

B = (22017 - 22009) : 24

Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2020 lúc 10:56

a) Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}-2012=0\)

\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1=0\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\right)=0\)

\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1>0\)

nên x-2013=0

hay x=2013

Vậy: Tập nghiệm S={2013}

b) Ta có: \(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+6x-5x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)(1)

Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)(2)

Từ (1) và (2) suy ra (x+6)(x-5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=5\end{matrix}\right.\)

Vậy: Tập nghiệm S={-6;5}

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 5 2020 lúc 11:06

a)

PT <=> \(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

<=> \(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

<=> \(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\)

\(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\ne0\)

<=> x - 2013 = 0

<=> x = 2013

KL: ...

b) PT <=> \(\left(x^4-5x^3\right)+\left(5x^3-25x^2\right)-\left(5x^2-25x\right)+\left(6x-30\right)=0\)

<=> \(x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)

<=> \(\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)

<=> \(\left(x-5\right)\left[\left(x^3+6x^2\right)-\left(x^2+6x\right)+\left(x+6\right)\right]=0\)

<=> \(\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]=0\)

<=> \(\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

<=> \(\left[{}\begin{matrix}x=5\\x=-6\\x=\varnothing\end{matrix}\right.\)

KL: ...

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 5 2020 lúc 11:12

b) Đặt 2x - 5 = a; x-2 = b

PT <=> \(a^3-b^3=\left(a-b\right)^3\)

<=> \(a^3-b^3=a^3-3a^2b+3ab^2-b^3\)

<=> \(3a^2b-3ab^2=0\)

<=> \(3ab\left(a-b\right)=0\)

TH1: a = 0

<=> 2x - 5 = 0

<=>\(x=\frac{5}{2}\)

Th2: b = 0

<=> x-2 = 0

<=> x = 2

TH3: a - b = 0

<=> 2x - 5 - (x-2) = 0

<=> x = 3

KL: x \(\in\left\{\frac{5}{2};2;3\right\}\)

bui ngoc mai
Xem chi tiết
💛Linh_Ducle💛
30 tháng 1 2018 lúc 20:40

\(S=2+\left(-3\right)+4+\left(-5\right)+...+2010+\left(-2011\right)\) ( có 2010 số hạng)

\(S=\left[2+\left(-3\right)\right]+\left[4+\left(-5\right)\right]+...+\left[2010+\left(-2011\right)\right]\)(có 1005 nhóm)

\(S=-1+\left(-1\right)+...+\left(-1\right)\)(có 1005 số -1)

\(S=-1.1005\)

\(S=-1005\)

Vũ Hương Giang
30 tháng 1 2018 lúc 20:35

Bạn gộp tổng các số nguyên âm lại rồi cộng tất cả với các số nguyên dương còn lại.

Mong bạn k cho mình !!!

Vũ Hương Giang
30 tháng 1 2018 lúc 20:35

k cho mk nhé