tìm x: b) 35.x+4= 81x+3
38.x + 4 = 81x+3 .tìm x
\(3^{8x+4}=81^{x+3}\)
\(3^{8x+4}=\left(3^4\right)^{x+3}\)
\(3^{8x+4}=3^{4x+12}\)
\(\Rightarrow8x+4=4x+12\)
\(\Rightarrow8x-4x=12-4\)
\(\Rightarrow4x=8\Rightarrow x=2\)
38.x + 4 = 81x + 3
38.x + 4 = (34)x + 3
38.x + 4 = 34.x + 12
8.x + 4 = 4.x + 12
8.x - 4.x = 12 - 4
4.x = 8
x = 8 : 4
x = 2
1.phân tích đa thức thành nhân tử
a) x^3 + 3x^2 + 3x + 1 - 27z^3
b) 81x^4 + 4
2.tìm x
a) 8x^3 - 50x = 0
b) (x + 9)^2 + 2.(x + 9).(x - 3) + (x - 3)^2 = 0
Tìm x. biết:
a) ( x2 + 4 )2 - 4x( x2 + 4 ) = 0
b) x5 - 18x3 + 81x = 0
a) (x2 + 4)2 - 4x(x2 + 4) = 0
(x2 + 4)(x2 + 4 - 4x) = 0
(x2 + 4)(x - 2)2 = 0
\(\Rightarrow\) x2 + 4 = 0 hoặc (x - 2)2 = 0
\(\Rightarrow\) x2 = - 4 hoặc x - 2 = 0
\(\Rightarrow\) x \(\in\) tập hợp rỗng hoặc x = 2
Vậy x = 2
b) x5 - 18x3 + 81x = 0
x(x4 - 18x2 + 81) = 0
x(x2 - 9) = 0
x(x - 3)(x + 3) = 0
\(\Rightarrow\) x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
\(\Rightarrow\) x = 0 hoặc x = 3 hoặc x = - 3
Vậy \(x\in\left\{0;3;-3\right\}\)
tìm x biết
\(x^3+81x-170=0\)
`x^3 + 81x - 170 = 0`
`<=>x^3 - 2x^2 + 2x^2 - 4x + 85x - 170 = 0`
`<=> x^2 ( x - 2 ) + 2x ( x - 2 ) + 85 ( x - 2 ) = 0`
`<=> ( x - 2 ) ( x^2 + 2x + 85 ) = 0`
`<=> ( x - 2 ) [ ( x + 1 )^2 + 84 ] = 0`
Mà `( x + 1 )^2 + 84 > 0 AA x`
`=> x - 2 = 0`
`<=> x = 2`
Vậy `S = { 2 }`
81x^4 + 436 -12x + x^2 =?
tìm x
Tìm x :
b) x5 - 18x3 + 81x = 0
\(x^5-18x^3+81x=0\)
\(\Leftrightarrow\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)
\(\Leftrightarrow x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x^3-9x\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow x.\left(x^2-9\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow x.\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2-9=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2=9\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=\pm3\end{array}\right.\)
Vây ..................
Tìm x:
38x+4=81x+3
`#3107`
\(3^{8x+4}=81^{x+3}\\ \Rightarrow3^{8x+4}=\left(3^4\right)^{x+3}\\ \Rightarrow3^{8x+4}=3^{4x+12}\\ \Rightarrow8x+4=4x+12\\ \Rightarrow8x-4x=12-4\\ \Rightarrow4x=8\\ \Rightarrow x=8\div4\\ \Rightarrow x=2\\ \text{Vậy, x = 2.}\)
Lời giải:
$3^{8x+4}=81^{x+3}$
$3^{8x+4}=(3^4)^{x+3}$
$3^{8x+4}=3^{4(x+3)}$
$\Rightarrow 8x+4=4(x+3)$
$\Rightarrow 2x+1=x+3$
$\Rightarrow x=2$
\(3^{8x+4}=81^{x+3}\)
\(\Rightarrow\left(3^4\right)^{2x+1}=81^{x+3}\)
\(\Rightarrow81^{2x+1}=81^{x+3}\)
\(\Rightarrow2x+1=x+3\)
\(\Rightarrow2x-x=3-1\)
\(\Rightarrow x=2\)
Giải pt
a) \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
b) \(\left(x+1\right)\left(\sqrt{x^2+2}+\sqrt{x^2+2x+3}\right)>\sqrt{x^2+2}-2x-1\)
a, Đặt \(\sqrt[3]{81x-8}=3y-2\Leftrightarrow9x=3y^3-6y^2+4y\left(1\right)\)
Phương trình tương đương: \(3y-2=x^3-2x^2+\dfrac{4}{3}x-2\)
\(\Leftrightarrow9y=3x^3-6x^2+4x\)
Ta có hệ: \(\left\{{}\begin{matrix}9x=3y^3-6y^2+4y\\9y=3x^3-6x^2+4x\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)\left(3x^2+3y^2+3xy-6x-6y+13\right)=0\)
Vì \(3x^2+3y^2+3xy-6x-6y+13\)
\(=\dfrac{1}{2}\left[3\left(x+y\right)^2+3\left(x-2\right)^2+3\left(y-2\right)^2+2\right]>0\) nên \(x=y\)
Khi đó: \(\left(1\right)\Leftrightarrow3x^3-6x^2-5x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3\pm2\sqrt{6}}{3}\end{matrix}\right.\)
Thử lại ta được \(x=0;x=\dfrac{3\pm2\sqrt{6}}{3}\) là các nghiệm của phương trình.
1/ Giải hpt = p đặt ẩn phụ : a,\(\left\{{}\begin{matrix}\left(x+y\right)^3+y=5\\3\left(x+y\right)^3-22xy+21=11x^2+12y^3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}81x^3y^2-81x^2y^2+33xy^2-29y^2=4\\25y^3+9x^2y^3-6xy^3-4y^2=24\end{matrix}\right.\)