A=-x^4+2x^3+4x+2002 GTLN
Tìm GTLN của C=,\(-x^4+2x^3-3x^2+4x+2002\)
D= \(\frac{-7x^2+74x-196}{x^2-10x+25}\)
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Tìm GTLN của biểu thức A=-x^4+2x^3-3x^2+4x+2018
\(A=-\left(x^4-2x^3+3x^2-4x-2018\right)=-\left[\left(x^4+x^2+4-2x^3+4x^2-4x\right)-2x^2\right]+2022\)
\(=-\left[\left(\left(x^2\right)^2+\left(x\right)^2+\left(2\right)^2-2\cdot x^2\cdot x+2\cdot x^2\cdot2-2\cdot x\cdot2\right)-2x^2\right]+2022\)
\(=-\left[\left(x^2-x+2\right)^2-2x^2\right]+2022\le2022\)
Mong bạn thông cảm, mình không chắc là đã giải đúng, có gì bỏ qua cho mình nhé!
1) Tìm GTNN của biểu thức Q = x2 - 2x +7; P = 2x2- 3x + 4
2) Tìm GTLN của biểu thức A = -4x2 + 2x + 5; B = 3 - 2x . x+4
3) Tìm GTLN của biểu thức M = xy với x+5 = y
Tìm GTLN
\(A=-x^2+2x+10\)
\(B=4x-2x^2+8\)
\(C=-x^2-x+1\)
D= \(-4x^2+6x+3\)
`A=-x^2+2x+10`
`=-(x^2-2x)+10`
`=-(x-1)^2+11<=11`
Dấu "=" xảy ra khi `x=1`.
`B=4x-2x^2+8`
`=-2(x^2-2x)+8`
`=-2(x^2-2x+1)+10`
`=-2(x-1)^2+10<=10`
Dấu "=" xảy ra khi `x=1`
`C=-x^2-x+1`
`=-(x^2+x)+1`
`=-(x^2+x+1/4)+1+1/4`
`=-(x+1/2)^2+5/4<=5/4`
Dấu "=" xảy ra khi `x=-1/2`
`D=-4x^2+6x+3`
`=-(4x^2-6x)+3`
`=-(4x^2-6x+9/4)+21/4`
`=-(2x-3/2)^2+21/4<=21/4`
Dấu "=' xảy ra khi `2x=3/2<=>x=3/4`
\(a,A=-x^2+2x+10=-x^2+2x-1+11=-\left(x^2-2x+1\right)+11\)
\(=11-\left(x-1\right)^2\)
- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=11-\left(x-1\right)^2\le11\)
Vậy MaxA = 11 <=> x = 1 .
\(b,B=-2x^2+4x-2+10=-2\left(x^2-2x+1\right)+10=10-2\left(x-1\right)^2\)
- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow B=10-2\left(x-1\right)^2\le10\)
Vậy MaxB = 10 <=> x = 1 .
\(c,C=-x^2-\dfrac{1}{2}.2.x-\dfrac{1}{4}+\dfrac{5}{4}=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\)
- Thấy : \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow C=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\le\dfrac{5}{4}\)
Vậy MaxC = 5/4 <=> x = -1/2 .
\(d,D=-4x^2+6x+3=-4x^2+2x.2.\dfrac{6}{4}-\dfrac{9}{4}+\dfrac{21}{4}=-\left(4x^2-6x+\dfrac{9}{4}\right)+\dfrac{21}{4}\)
\(=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\)
- Thấy : \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\le\dfrac{21}{4}\)
Vậy MaxD=21/4 <=> x = 3/4 .
b1. Phân tích đthức -> nhân tử.
a) x^3 - 3x^2 - 4x +13
b) x^4 - 5x^2 +4
c) (x+y+z)^3 -x^3 - y^3 - z^3
d) 45+ x^3 -5x^2 - 9x
e) x^4 - 2x^3 - 3x^3 - 2x -3
b2. tìm GTLN hoặc GLNN
a) A = 2x^2 - 8x - 10 -> GTNN
b) B = 9x - 3x^2 -> GTLN
2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)
\(=2\left(x-2\right)^2-18\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy minA = - 18 <=> x = 2
b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy maxB = 27/4 <=> x = 3/2
Sửa đề:x3-3x2-4x+12
a,x3-3x2-4x+12
=(x3-3x2)-(4x+12)
=x2(x-3)-4(x-3)
=(x2-4)(x-3)
b,x4- 5x2 +4
x4-4x2-x2+4
(x4-x2)-(4x2+4)
x2(x2-1)-4(x2-1)
(x2-4)(x2-1)
Bài 1.
a) x3 - 3x2 - 4x + 12 ( mạn phép sửa 13 thành 12, chứ để 13 là không phân tích được :> )
= x2( x - 3 ) - 4( x - 3 )
= ( x - 3 )( x2 - 4 )
= ( x - 3 )( x - 2 )( x + 2 )
b) x4 - 5x2 + 4
Đặt t = x2
Đa thức <=> t2 - 5t + 4
= t2 - t - 4t + 4
= t( t - 1 ) - 4( t - 1 )
= ( t - 1 )( t - 4 )
= ( x2 - 1 )( x2 - 4 )
= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )
c) ( x + y + z )3 - x3 - y3 - z3
= ( x + y + z )3 - ( x3 + y3 + z3 )
= ( x + y + z )3 - [ ( x + y + z )3 - 3( x + y )( y + z )( z + x ) ] ( chỗ này bạn xem HĐT tổng ba lập phương nhé )
= ( x + y + z )3 - ( x + y + z )3 + 3( x + y )( y + z )( z + x )
= 3( x + y )( y + z )( z + x )
d) 45 + x3 - 5x2 - 9x
= ( x3 - 5x2 ) - ( 9x - 45 )
= x2( x - 5 ) - 9( x - 5 )
= ( x - 5 )( x2 - 9 )
= ( x - 5 )( x - 3 )( x + 3 )
e) x4 - 2x3 + 3x2 - 2x - 3 ( sửa -3x3 -> 3x2 )
= x4 - x3 - x3 + 3x2 - x2 + x2 - 3x + x - 3
= ( x4 - x3 + 3x2 ) - ( x3 - x2 + 3x ) - ( x2 - x + 3 )
= x2( x2 - x + 3 ) - x( x2 - x + 3 ) - 1( x2 - x + 3 )
= ( x2 - x - 1 )( x2 - x + 3 )
Bài 2.
A = 2x2 - 8x - 10
= 2( x2 - 4x + 4 ) - 18
= 2( x - 2 )2 - 18
2( x - 2 )2 ≥ 0 ∀ x => 2( x - 2 )2 - 18 ≥ -18
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -18 <=> x = 2
B = 9x - 3x2
= -3( x2 - 3x + 9/4 ) + 27/4
= -3( x - 3/2 )2 + 27/4
-3( x - 3/2 )2 ≤ 0 ∀ x => -3( x - 3/2 )2 + 27/4 ≤ 27/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 27/4 <=> x = 3/2
Tìm GTLN, GTNN:
a, \(y=4\sin^2x-4\sin x+3\).
b, \(y=\cos^2x+2\sin x+2\).
c, \(y=\sin^4x-2\cos^2x+1\).
a.
Tìm min:
$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$
Vậy $y_{\min}=2$
----------------
Mặt khác:
$y=4\sin x(\sin x+1)-8(\sin x+1)+11$
$=(\sin x+1)(4\sin x-8)+11$
$=4(\sin x+1)(\sin x-2)+11$
Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$
$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$
$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$
Vậy $y_{\max}=11$
b.
$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$
$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$
Vậy $y_{\max}=4$.
---------------------------
Mặt khác:
$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$
$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$
$=(1+\sin x)(3-\sin x)$
Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$
$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$
Vậy $y_{\min}=0$
c.
$y=\sin ^4x-2\cos ^2x+1=\sin ^4x-2(1-\sin ^2x)+1$
$=\sin ^4x+2\sin ^2x-1$
$=(\sin ^4x-1)+(2\sin ^2x-2)+2$
$=(\sin ^2x-1)(\sin ^2x+1)+2(\sin ^2x-1)+2$
$=(\sin ^2x-1)(\sin ^2x+3)+2$
Vì $\sin x\in [-1;1]$ nên $\sin ^2x\leq 1$
$\Rightarrow (\sin ^2x-1)(\sin ^2x+3)\leq 0$
$\Rightarrow y=(\sin ^2x-1)(\sin ^2x+3)+2\leq 2$
Vậy $y_{\max}=2$
------------------------------------------
$y=\sin ^4x+2\sin ^2x-1=\sin ^2x(\sin ^2x+2)-1$
Vì $\sin ^2x\geq 0$ nên $\sin ^2x(\sin ^2x+2)\geq 0$
$\Rightarrow y=\sin ^2x(\sin ^2x+2)-1\geq 0-1=-1$
Vậy $y_{\min}=-1$
tìm gtnn,gtln
y=|x-2|+|1-x|
y=|2x-1|+|3-x|-2x
y=|2x+4|+|x+3|-x
y=\(\sqrt{4x^2-4x+1}\)-|x-1|
áp dụng tính chất |A|+|B|>+|A+B|
y=|x-2|+|1-x|\(\ge\)|x-2+1-x|=|-1|=1
vậy gtri nhỏ nhất y=1 khi (x-2)(1-x)\(\ge0\)
<=> \(-1\le2\)
các câu sau tương tự nha
tìm gtln của các biểu thức sau
a)A=-x^2+1/2
b)B=4x-x^2
c)C=-2x^2+x
d)D=4/3x-2x^2-1
e)E=4xy+4y+2x-2x^2-4x^2-6
Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi.