Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh_Chi_chimte
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Bảy việt Nguyễn
Xem chi tiết
Trương Minh Trọng
20 tháng 6 2017 lúc 19:25

\(A=-\left(x^4-2x^3+3x^2-4x-2018\right)=-\left[\left(x^4+x^2+4-2x^3+4x^2-4x\right)-2x^2\right]+2022\)

\(=-\left[\left(\left(x^2\right)^2+\left(x\right)^2+\left(2\right)^2-2\cdot x^2\cdot x+2\cdot x^2\cdot2-2\cdot x\cdot2\right)-2x^2\right]+2022\)

\(=-\left[\left(x^2-x+2\right)^2-2x^2\right]+2022\le2022\)

Mong bạn thông cảm, mình không chắc là đã giải đúng, có gì bỏ qua cho mình nhé!

Nii-chan
Xem chi tiết
camcon
Xem chi tiết
Yeutoanhoc
25 tháng 6 2021 lúc 15:45

`A=-x^2+2x+10`

`=-(x^2-2x)+10`

`=-(x-1)^2+11<=11`

Dấu "=" xảy ra khi `x=1`.

`B=4x-2x^2+8`

`=-2(x^2-2x)+8`

`=-2(x^2-2x+1)+10`

`=-2(x-1)^2+10<=10`

Dấu "=" xảy ra khi `x=1`

`C=-x^2-x+1`

`=-(x^2+x)+1`

`=-(x^2+x+1/4)+1+1/4`

`=-(x+1/2)^2+5/4<=5/4`

Dấu "=" xảy ra khi `x=-1/2`

`D=-4x^2+6x+3`

`=-(4x^2-6x)+3`

`=-(4x^2-6x+9/4)+21/4`

`=-(2x-3/2)^2+21/4<=21/4`

Dấu "=' xảy ra khi `2x=3/2<=>x=3/4`

Nguyễn Ngọc Lộc
25 tháng 6 2021 lúc 15:46

\(a,A=-x^2+2x+10=-x^2+2x-1+11=-\left(x^2-2x+1\right)+11\)

\(=11-\left(x-1\right)^2\)

- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=11-\left(x-1\right)^2\le11\)

Vậy MaxA = 11 <=> x = 1 .

\(b,B=-2x^2+4x-2+10=-2\left(x^2-2x+1\right)+10=10-2\left(x-1\right)^2\)

- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow B=10-2\left(x-1\right)^2\le10\)

Vậy MaxB = 10 <=> x = 1 .

\(c,C=-x^2-\dfrac{1}{2}.2.x-\dfrac{1}{4}+\dfrac{5}{4}=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\)

- Thấy : \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow C=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\le\dfrac{5}{4}\)

Vậy MaxC = 5/4 <=> x = -1/2 .

\(d,D=-4x^2+6x+3=-4x^2+2x.2.\dfrac{6}{4}-\dfrac{9}{4}+\dfrac{21}{4}=-\left(4x^2-6x+\dfrac{9}{4}\right)+\dfrac{21}{4}\)

\(=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\)

- Thấy : \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\le\dfrac{21}{4}\)

Vậy MaxD=21/4 <=> x = 3/4 .

Chau, Bao Pham
Xem chi tiết
Khánh Ngọc
28 tháng 8 2020 lúc 11:31

2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)

\(=2\left(x-2\right)^2-18\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy minA = - 18 <=> x = 2

b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy maxB = 27/4 <=> x = 3/2

Khách vãng lai đã xóa
FL.Han_
28 tháng 8 2020 lúc 11:45

Sửa đề:x3-3x2-4x+12

a,x3-3x2-4x+12

=(x3-3x2)-(4x+12)

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

b,x4- 5x2 +4

x4-4x2-x2+4

(x4-x2)-(4x2+4)

x2(x2-1)-4(x2-1)

(x2-4)(x2-1)

  

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
28 tháng 8 2020 lúc 11:53

Bài 1.

a) x3 - 3x2 - 4x + 12 ( mạn phép sửa 13 thành 12, chứ để 13 là không phân tích được :> )

= x2( x - 3 ) - 4( x - 3 )

= ( x - 3 )( x2 - 4 )

= ( x - 3 )( x - 2 )( x + 2 )

b) x4 - 5x2 + 4

Đặt t = x2

Đa thức <=> t2 - 5t + 4

= t2 - t - 4t + 4

= t( t - 1 ) - 4( t - 1 )

= ( t - 1 )( t - 4 )

= ( x2 - 1 )( x2 - 4 )

= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )

c) ( x + y + z )3 - x3 - y3 - z3

= ( x + y + z )3 - ( x3 + y3 + z3 )

= ( x + y + z )3 - [ ( x + y + z )3 - 3( x + y )( y + z )( z + x ) ] ( chỗ này bạn xem HĐT tổng ba lập phương nhé )

= ( x + y + z )3 - ( x + y + z )3 + 3( x + y )( y + z )( z + x )

= 3( x + y )( y + z )( z + x )

d) 45 + x3 - 5x2 - 9x 

= ( x3 - 5x2 ) - ( 9x - 45 )

= x2( x - 5 ) - 9( x - 5 )

= ( x - 5 )( x2 - 9 )

= ( x - 5 )( x - 3 )( x + 3 )

e) x4 - 2x3 + 3x2 - 2x - 3 ( sửa -3x3 -> 3x2 )

= x4 - x3 - x3 + 3x2 - x2 + x2 - 3x + x - 3

= ( x4 - x3 + 3x2 ) - ( x3 - x2 + 3x ) - ( x2 - x + 3 )

= x2( x2 - x + 3 ) - x( x2 - x + 3 ) - 1( x2 - x + 3 )

= ( x2 - x - 1 )( x2 - x + 3 )

Bài 2.

A = 2x2 - 8x - 10

= 2( x2 - 4x + 4 ) - 18

= 2( x - 2 )2 - 18 

2( x - 2 )2 ≥ 0 ∀ x => 2( x - 2 )2 - 18 ≥ -18

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MinA = -18 <=> x = 2

B = 9x - 3x2

= -3( x2 - 3x + 9/4 ) + 27/4

= -3( x - 3/2 )2 + 27/4

-3( x - 3/2 )2 ≤ 0 ∀ x => -3( x - 3/2 )2 + 27/4 ≤ 27/4

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MaxB = 27/4 <=> x = 3/2

Khách vãng lai đã xóa
Hoàng Anh
Xem chi tiết
Akai Haruma
2 tháng 9 2023 lúc 20:46

a.

Tìm min:

$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$

Vậy $y_{\min}=2$

----------------

Mặt khác: 

$y=4\sin x(\sin x+1)-8(\sin x+1)+11$

$=(\sin x+1)(4\sin x-8)+11$

$=4(\sin x+1)(\sin x-2)+11$

Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$

$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$

$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$

Vậy $y_{\max}=11$

 

Akai Haruma
2 tháng 9 2023 lúc 20:53

b.

$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$

$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$

Vậy $y_{\max}=4$.

---------------------------

Mặt khác:

$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$

$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$

$=(1+\sin x)(3-\sin x)$

Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$

$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$

Vậy $y_{\min}=0$

Akai Haruma
2 tháng 9 2023 lúc 21:01

c.

$y=\sin ^4x-2\cos ^2x+1=\sin ^4x-2(1-\sin ^2x)+1$

$=\sin ^4x+2\sin ^2x-1$

$=(\sin ^4x-1)+(2\sin ^2x-2)+2$

$=(\sin ^2x-1)(\sin ^2x+1)+2(\sin ^2x-1)+2$

$=(\sin ^2x-1)(\sin ^2x+3)+2$

Vì $\sin x\in [-1;1]$ nên $\sin ^2x\leq 1$

$\Rightarrow (\sin ^2x-1)(\sin ^2x+3)\leq 0$

$\Rightarrow y=(\sin ^2x-1)(\sin ^2x+3)+2\leq 2$

Vậy $y_{\max}=2$

------------------------------------------

$y=\sin ^4x+2\sin ^2x-1=\sin ^2x(\sin ^2x+2)-1$

Vì $\sin ^2x\geq 0$ nên $\sin ^2x(\sin ^2x+2)\geq 0$

$\Rightarrow y=\sin ^2x(\sin ^2x+2)-1\geq 0-1=-1$
Vậy $y_{\min}=-1$

 

tranbem
Xem chi tiết
Nguyễn Thị Anh
1 tháng 8 2016 lúc 22:27

áp dụng tính chất |A|+|B|>+|A+B|

y=|x-2|+|1-x|\(\ge\)|x-2+1-x|=|-1|=1

vậy gtri nhỏ nhất y=1 khi (x-2)(1-x)\(\ge0\)

<=> \(-1\le2\)

các câu sau tương tự nha

Marry Lili Potter
Xem chi tiết
Trên con đường thành côn...
5 tháng 8 2021 lúc 9:25

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi. 

Trên con đường thành côn...
5 tháng 8 2021 lúc 9:35

undefined

Trên con đường thành côn...
5 tháng 8 2021 lúc 9:44

Bạn xem lại đề câu e nhé.

undefined