Tìm tất cả các số thực x,y thỏa mãn x+y=3 và x^3 + y^3 - xy =7
tìm tất cả các số nguyên thỏa mãn :x+y/x^2-xy+y^2=3/7
tìm tất cả các số nguyên thỏa mãn :x+y/x^2-xy+y^2=3/7
bày hộ!!!
Tìm tất cả các số nguyên x và y thỏa mãn phương trình 3(x^2+xy+y^2)=x+8y
Tìm tất cả các số nguyên x,y thỏa mãn phương trình: \(x\left(y^2+7\right)+y\left(x^2+7\right)+17=xy\left(xy+3\right)\)
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn x3 - y3 + xy = 1
\(x^3-y^3+xy=1\)
\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)+xy=1\)
\(\Leftrightarrow\left(x-y\right)^3+\frac{1}{27}+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)
\(\Leftrightarrow\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}\right]+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)
\(\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}+3xy\right]=\frac{26}{27}\)
Đoạn này ez
Tìm tất cả các số x,y thỏa mãn \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(|xy|=2\).
\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{\left(x^3+y^3\right)-\left(x^3-2y^3\right)}{2}=\frac{3y^3}{2}\)
Từ\(\frac{x^3+y^3}{6}=\frac{3y^3}{2}\Rightarrow2x^3+2y^3=18y^3\Rightarrow2x^3=16y^3\Rightarrow x^3=8y^3=2^3y^3=\left(2y\right)^3\Rightarrow x=2y\)
Thế \(x=2y\)vào \(\left|xy\right|=\left|2y\cdot y\right|=2\Rightarrow\left|2y^2\right|=2\Rightarrow2y^2=2\)(vì \(2y^2\ge0\))\(\Rightarrow y^2=1\)
\(\Rightarrow y=\pm1\Rightarrow x=\pm2\)
có nghĩ là có 4 đáp số nhé bạn y=1;x=2
y=1;x=-2
y=-1;x=2
y=-1;x=-2
Tìm tất cả số nguyên x;y thỏa mãn: (x^2-2x+3)(xy+y-2) = x-1
a)Tìm tất cả các cặp số nguyên x, y thỏa mãn:x(2y+3)=y+1
b) Tìm tất cả các số nguyên của x thỏa mãn:(-1)+3(-5)+7 ...+ x = 2002
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........