Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Nhat Minh
Xem chi tiết
Thảo My
Xem chi tiết
Nguyễn Minh Quân
20 tháng 2 2018 lúc 16:20

tự túc là hạnh phúc

minh aoyama
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Ichigo
Xem chi tiết
Lục Minh Nguyệt
Xem chi tiết
Đặng Ngọc Quỳnh
14 tháng 10 2020 lúc 19:01

Chứng minh

a) \(2\equiv-1\left(mod3\right)\)

\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)

b) \(19\equiv-1\left(mod20\right)\)

\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)

\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)

Khách vãng lai đã xóa
Online Math
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2019 lúc 14:23

\(f\left(0\right)=c\)\(f\left(0\right)⋮2011\Rightarrow c⋮2011\)

\(f\left(1\right)⋮2011\Rightarrow a+b+c⋮2011\Rightarrow a+b⋮2011\)

\(f\left(-1\right)⋮2011\Rightarrow a-b+c⋮2011\Rightarrow a-b⋮2011\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)⋮2011\Rightarrow2a⋮2011\)

Mà 2 và 2011 nguyên tố cùng nhau \(\Rightarrow a⋮2011\)

\(\left\{{}\begin{matrix}a⋮2011\\a+b⋮2011\end{matrix}\right.\) \(\Rightarrow b⋮2011\)

Chanh Bùi thị
Xem chi tiết
kaneki_ken
3 tháng 11 2017 lúc 21:16

từ giả thiết => a2-a+b2-b=0

                  => a(a-1)+b(b-1)=0

không mất tính tổng quát giả sử a\(\le\)b => a(a-1)\(\le\)b((b-1)

=>2a(a-1) \(\le\)0

=>a(a-1) \(\le\)0

\(\Rightarrow\hept{\begin{cases}a\ge0\\a\le1\end{cases}}\)\(\Rightarrow a\left(1-a\right)\ge0\)

                              \(\Rightarrow b\left(1-b\right)\ge0\)

                             => a(1-a) + b(1-b) \(\ge\)0

                              => a+b-a2-b2 \(\ge\)0

Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a\left(1-a\right)=0\\b\left(1-b\right)=0\end{cases}}\)

                       \(\hept{\begin{cases}\orbr{\begin{cases}a=0\\a=1\end{cases}}\\\orbr{\begin{cases}b=0\\b=1\end{cases}}\end{cases}}\)

kaneki_ken
3 tháng 11 2017 lúc 21:17

đn sau dễ rồi tự  giải