\(6\sqrt{\dfrac{x}{2y}}\)
với x<0,y<0
Bài 30 (trang 19 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau:
a) $\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}$ với $x>0,y \ne 0$ ; b) $2y^2.\sqrt{\dfrac{x^4}{4y^2}}$ với $y<0$ ;
c) $5xy.\sqrt{\dfrac{25x^2}{y^6}}$ với $x<0$,$y>0$; d) $0,2x^3y^3.\sqrt{\dfrac{16}{x^4y^8}}$ với $x \ne 0, y\ne 0$.
(Vì x > 0 nên |x| = x; y2 > 0 với mọi y ≠ 0)
(Vì x2 ≥ 0 với mọi x; và vì y < 0 nên |2y| = – 2y)
(Vì x < 0 nên |5x| = – 5x; y > 0 nên |y3| = y3)
(Vì x2y4 = (xy2)2 > 0 với mọi x ≠ 0, y ≠ 0)
a) 1/y
b) - x^2 y
c) -25x^2 / y^2
d) 4x/5y
.
(Do nên , nên )
.
(Do nên và nên )
.
(Do nên và nên )
.
( Do và nên )
Rút gọn:
\(A=\left[\dfrac{2\left(x+y\right)}{\sqrt{x^3}-2\sqrt{2y^3}}-\dfrac{\sqrt{x}}{x+\sqrt{2xy}+2y}\right].\left[\dfrac{x\sqrt{x}+2\sqrt{2y^3}}{2y+\sqrt{2xy}}-\sqrt{x}\right]\)
\(A=B.C\) đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{2y}\end{matrix}\right.\)
\(B=\dfrac{2a^2+b^2}{\left(a-b\right)\left(a^2+b^2+ab\right)}-\dfrac{a}{a^2+ab+b^2}\)
\(B=\dfrac{2a^2+b^2-a\left(a-b\right)}{\left(a-b\right)\left(a^2+b^2+ab\right)}=\dfrac{a^2+b^2+ab}{\left(a-b\right)\left(a^2+b^2+ab\right)}\)
\(B=\dfrac{1}{a-b}\)
\(C=\dfrac{a^3+b^3}{b^2+ab}-a=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{b\left(a+b\right)}-a=\dfrac{a^2+b^2-ab-ab}{b}\)
\(C=\dfrac{\left(a-b\right)^2}{b}\)
\(A=\dfrac{1}{a-b}.\dfrac{\left(a-b\right)^2}{b}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)
\(A=\sqrt{\dfrac{x}{2y}}-1\)
giúp giải hệ
\(\dfrac{2}{3x}+\dfrac{x}{3y}=\dfrac{x+2\sqrt{y}}{x^2+2y}\\ 2\left(x+\sqrt{y}\right)=\sqrt{x+6}-y\)
a,-12:(3/4-5/6)^2
,b,10.\(\sqrt{0.01}.\sqrt{\dfrac{16}{9}+3\sqrt{49}-\dfrac{1}{6}\sqrt{4}}\)
c,x/6=y/3=z/2 và x-2y+4z=8
d,|1/4+x|-1/3=2/5
Cho x,y,z dương thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\) . Chứng minh rằng \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2+x^2+3}}\) ≤ \(\dfrac{\sqrt{6}}{2}\)
\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)
Mặt khác:
\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)
\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)
Rút gọn và tìm điều kiện xác định
\(\left[\dfrac{2\left(x+y\right)}{\sqrt{x}^3-2\sqrt{2y^3}}-\dfrac{\sqrt{x}}{x+\sqrt{2xy}+2y}\right].\left[\dfrac{x\sqrt{x}+2\sqrt{2y^3}}{2y+\sqrt{2xy}}-\sqrt{x}\right]\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
\(B=\dfrac{1}{\sqrt{x}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+...+\dfrac{1}{\sqrt{x+2015}+\sqrt{x+2016}}\)với x = 2017
B = \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+...+\dfrac{1}{\sqrt{x+2015}+\sqrt{x+2016}}\)
B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{x+2015-x-2016}\)
B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{-1}\)
B = \(-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{2015}+\sqrt{2016}\)
B = \(-\sqrt{x}+\sqrt{2016}\)
Khi x = 2017
B = \(-\sqrt{2017}+\sqrt{2016}=\sqrt{2016}-\sqrt{2017}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x\sqrt{2y}-y\sqrt{x-1}=\dfrac{1}{2}\left(x-y\right)\sqrt[3]{x+6}\\xy+x+y=x^2-2y^2\end{matrix}\right.\)