1/1.3 + 2/3.7 + 3/7.13 + 4/13.21+ 5/21.35
A = 1/1.3 + 2/3.7 + 3/7.13 + ... +10/91.111
=>A=1/2.(2/1.3+4/3.7+6/7.13+...+20/91.111)
=>A=1/2.(3-1/1.3+7-3/3.7+13-7/7.13+...+111-91/91.111)
=>A=1/2.(1-1/3+1/3-1/7+1/7-1/13+...+1/91-1/111)
=>A=1/2.(1-1/111)
=>A=1/2.100/111
=>A=50/111
T*ck cho mìn nhóe!!!
Tính nhanh :
-13.21-13.80+13
-1+2-3+4-5+6-...-2021+2022
-13.21-13.80+13
=-13.(21-80+1)
=-13.100
=-1300
-1+2-3+4-5+6-...-2021+2022
=(-1+2)+(-3+4)+...+(-2021+2022)
=1+1+1+...+1 (1011 số hạng)
=1011
-13 . 21 - 13 . 80 + 13
13 ( -21 - 80 + 1 )
13 . ( -100 )
- 1300
\(-13\cdot21-13\cdot80+13=13\left(-21-80+1\right)=13\cdot\left(-100\right)=-1300\)
1. tính:
a) 1.3+2.4+3.5+4.6+...+n.(n+2)
b) 1.5+2.6+3.7+...+n.(n+4)
c) 12 + 32+52+...+(2n+1)2
Tính:
a) C = 3/1.3 + 3/3.5 + 3/3.7 +...+ 3/49.51
b) D = 1/2 + 1/14 + 1/35 + 1/65 + 1/104 + 1/152
a; C = \(\dfrac{3}{1.3}\) + \(\dfrac{3}{3.5}\) + \(\dfrac{3}{3.7}\) + ... + \(\dfrac{3}{49.51}\)
C = \(\dfrac{3}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{49.51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).\(\dfrac{50}{51}\)
C = \(\dfrac{25}{17}\)
A=2/1.3+2/3.5+2/3.7+....+2/2021.2023
=)
B=1/2.5+1/5.8+1/8.11+...+1/95.98
\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2023}\\ A=\dfrac{2023}{2023}-\dfrac{1}{2023}\\ A=\dfrac{2022}{2023}\)
=
=12−198tự làm tiếp nha ( giống câu a)
1.Tính tổng: A = 1.2 + 3.4 +...+ 2(2n+1)(n+1)
2.Tính tổng: A = 1.3 + 3.7 + 5.11 +...+ 99.199
Tính 1/1.3+1/3.5+1/3.7+.......+1/101.103
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{101.103}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{101.103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{101}-\frac{1}{103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{103}\right)\)
=\(\frac{1}{2}.\frac{102}{103}\)
=\(\frac{51}{103}\)
Tính 1/1.3+1/3.5+1/3.7+........+1/101.103
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + ... + \(\dfrac{1}{101.103}\)
A = \(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{101.103}\))
A = \(\dfrac{1}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{101}\) - \(\dfrac{1}{103}\))
A = \(\dfrac{1}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{103}\))
A = \(\dfrac{1}{2}\). \(\dfrac{102}{103}\)
A = \(\dfrac{51}{103}\)
Em ơi thừa số thứ ba phải là \(\dfrac{1}{5.7}\) mới đúng em nhé.
32-2.{3^3-4.[5^6:5^4-(3.7-1)]}
\(32-2\left\{3^3-4\left[5^6:5^4-\left(3.7-1\right)\right]\right\}\)
\(=32-2\left[27-4\left(25-20\right)\right]\)
\(=32-2\left(27-100+80\right)\)
\(=32-2.7=32-14=18\)