rút gọn biểu thức
\(\frac{\sqrt{2x+2\sqrt{x^2+4}}}{\sqrt{x^2-4}+x+2}\)
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
Rút gọn biểu thức : A=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
ĐKXĐ: \(x\ge2\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Xét \(x\ge4\Rightarrow\sqrt{x-2}\ge\sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
Xét \(0\le x< 4\Rightarrow\sqrt{x-2}< \sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
Cho biểu thức \(A=\dfrac{2}{2+\sqrt{x}}+\dfrac{2\sqrt{x}}{2-\sqrt{x}}-\dfrac{2x}{4-x}\) (x ≥ 0 ; x = 4)
Rút gọn biểu thức A
\(\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}-\dfrac{2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}+4\sqrt{x}+2x-2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2}{2+\sqrt{x}}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
1. Cho biểu thức:
B= ( \(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\)) :\(\frac{1}{\sqrt{x}-1}\)
a) Rút gọn B
b) Tìm Min B
2. Rút gọn biểu thức:
\(\sqrt{\frac{1}{1-2x+x^2}}.\sqrt{\frac{4-4x+4x^2}{81}}\)
3. giải phương trình: 3+\(\sqrt{2x-3}\)= x
Rút gọn biểu thức sau: \(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)
\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)
\(=\sqrt{\frac{x-2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\frac{2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
Cho biểu thức:\(Q=\frac{2}{\:2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\)
a) Rút gọn biểu thức Q.
b) Tìm x để \(Q=\frac{6}{5}\)
\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)
\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)
\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)
Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.
rút gọn và tính giá trị biểu thức:
E= \(\frac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\) , x= 2(\(\sqrt{3}\) +1)
Bài làm:
Ta có: \(E=\frac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)
\(E=\frac{\sqrt{\left(x+2\right)+2\sqrt{\left(x-2\right)\left(x+2\right)}+\left(x-2\right)}}{\sqrt{x^2-4}+x+2}\)
\(E=\frac{\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}}{\sqrt{x^2-4}+x+2}\)
\(E=\frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}+x+2}\)
Thay \(x=2\left(\sqrt{3}+1\right)\) vào thì giá trị của E là:
\(E=\frac{\sqrt{2\sqrt{3}+2+2}+\sqrt{2\sqrt{3}+2-2}}{\sqrt{\left(2\sqrt{3}+2\right)^2-4}+2\sqrt{3}+2+2}\)
\(E=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{2\sqrt{3}}}{\sqrt{12+4+8\sqrt{3}-4}+4+2\sqrt{3}}\)
\(E=\frac{\sqrt{3}+1+\sqrt{2\sqrt{3}}}{2\sqrt{3+2\sqrt{3}}+4+2\sqrt{3}}\)
rút gọn biểu thức \(\frac{\sqrt{4x+4+\frac{1}{x}}}{\sqrt{x}|2x^2-x+1|}\)