Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mama chụt chụt
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 8 2021 lúc 17:52

\(\left(\sqrt{7}-\sqrt{2}\right)^2+\sqrt{56}=7+2-2\sqrt{14}+2\sqrt{14}=9\)

Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 22:30

Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)^2+\sqrt{56}\)

\(=9-2\sqrt{14}+2\sqrt{14}\)

=9

Vu Ngoc Hong Chau
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
tam nguyen
Xem chi tiết
Nguyễn Trang
25 tháng 7 2017 lúc 13:57

Hỏi đáp Toán

Nguyễn Trang
25 tháng 7 2017 lúc 14:04

Hỏi đáp Toán

Hoài An
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 9:18

\(a,=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=\sqrt{6}-1\\ b,=3-2\sqrt{2}+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\\ c,=\sqrt{\left(\sqrt{5}+2\right)^2}-\left(\sqrt{5}-1\right)=\sqrt{5}+2-\sqrt{5}+1=3\)

Lấp La Lấp Lánh
24 tháng 9 2021 lúc 9:19

a) \(=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=-1+\sqrt{6}\)

b) \(=\left|3-2\sqrt{2}\right|+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\)

c) \(=\sqrt{\left(\sqrt{5}+2\right)^2}-\left|1-\sqrt{5}\right|=\sqrt{5}+2+1-\sqrt{5}=3\)

Thuận Phạm
24 tháng 9 2021 lúc 9:35

a)\(\sqrt{\left(2\sqrt{6}-4\right)^2}+\sqrt{\left(3-\sqrt{6}\right)^2}\)=2\(\sqrt{6}-4+3-\sqrt{6}\)=\(\sqrt{6}-1\)
b)\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{18}\right)^2}\)=3-2\(\sqrt{2}+1+3\sqrt{2}\)=4+\(\sqrt{2}\)
c)\(\sqrt{\left(2+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}\)=2+\(\sqrt{5}+1-\sqrt{5}\)=3

Nguyễn Trâm
Xem chi tiết
Akai Haruma
6 tháng 10 2019 lúc 15:13

a)

\((4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})^2=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})\)

\(=2(4^2-15)=2\)

b)

\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}=\sqrt{(8+2\sqrt{15})+2+2(\sqrt{6}+\sqrt{10})}\)

\(=\sqrt{(\sqrt{5}+\sqrt{3})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2}\)

\(=\sqrt{(\sqrt{5}+\sqrt{3}+\sqrt{2})^2}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)

Akai Haruma
6 tháng 10 2019 lúc 16:03

c)

\((\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}):(2\sqrt{\sqrt{5}-2})\)

\(=(\sqrt{(5+2\sqrt{9\sqrt{5}-19})(\sqrt{5}+2)}-\sqrt{(7-\sqrt{5})(\sqrt{5}+2)}):(2\sqrt{(\sqrt{5}-2)(\sqrt{5}+2)})\)

\(=[\sqrt{10+5\sqrt{5}+2\sqrt{(9\sqrt{5}-19)(9+4\sqrt{5})}}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{10+5\sqrt{5}+2\sqrt{9+5\sqrt{5}}}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{(9+5\sqrt{5})+2\sqrt{9+5\sqrt{5}}+1}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{(\sqrt{9+5\sqrt{5}}+1)^2}-\sqrt{9+5\sqrt{5}}]:2\)

\(=[\sqrt{9+5\sqrt{5}}+1-\sqrt{9+5\sqrt{5}}]:2=\frac{1}{2}\)

d)

\((\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}})^2=18+2\sqrt{(9+\sqrt{5})(9-\sqrt{5})}=18+4\sqrt{19}\)

\(\Rightarrow \sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}=\sqrt{18+4\sqrt{19}}\)

Do đó:
\(\frac{\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{3-2\sqrt{2}}=\frac{\sqrt{18+4\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{2+1-2\sqrt{2.1}}\)

\(=\frac{\sqrt{2}.\sqrt{9+2\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{(\sqrt{2}-1)^2}=\sqrt{2}-(\sqrt{2}-1)=1\)

Doanh Phung
Xem chi tiết
💋Bevis💋
23 tháng 7 2019 lúc 16:30

\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right).\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)

\(=2\)

\(b,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Hoài An
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Hiệu diệu phương
27 tháng 8 2019 lúc 10:17

a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)

b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)

c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)

d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)