Cho hình bình hành ABCD, O là trung điểm của BD. Kẻ AE, CF lần lượt vuông góc với BD tại E và F.
cho hìh bih hành abcd (góc a lớn hơn 90 độ). vẽ ae vuông góc với bd tại e, ae cắt cd tại m, về cf vông góc với bd tại f, cf cắt ab tại n
a) CMR :AMCN là hình bình hành ?
b) CMR :AECF là hình bình hành
c) Cho O là trung điểm của MN. CM : O là trung điểm của BD ?
Bài 1: Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K . Chứng minh tứ giác AHCK là hình bình hành. Bài 2: Cho hình bình hành ABCD có M N, lần lượt là trung điểm của AB CD , . AN và CM cắt BD lần lượt tại E và F . a) Chứng minh AMCN là hình bình hành. ( Hình 6) b) Từ F kẻ đường thẳng song song với AB cắt AN tại G. Chứng minh BF FE ED . Bài 3: Cho tam giác ABC cân tại A , lấy điểm D trên cạnh AB , điểm E trên cạnh AC sao cho BD CE . a) Tứ giác BDEC là hì gì? Vì sao? b) Các điểm D E, ở vị trí nào thì BD DE EC
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED
Cho hình bình hành ABCD , kẻ AE và CF vuông góc với BD . AC cắt BD tại I . Chứng minh: I là trung điểm của EF .
Cho hình bình hành ABCD , vẽ AE vuông góc BD và CF vuông góc BD ( E, F thuộc BD).
a) C/m AECF là hình bình hành
b) Gọi O là trung điểm EF , c/m A,O,C thẳng hàng
cho hình bình hành ABCD . AC cắt BD tại O. E,F lần lượt là trung điểm của OD,OB .
a, Chứng minh AE // CF
b, Gọi giao điểm của AE và DC là K.Chứng minh DK =KC/2
Cho hình bình hành ABCD, Có hai đường chéo AC và BD cắt nhau tại O. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD. Chứng minh rằng Tứ giác AECF là hình bình hành.
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB(Hai cạnh đối của hình bình hành ABCD)
\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)
Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)
Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)
Ta có: ED+EC=DC(E nằm giữa D và C)
FB+FA=AB(F nằm giữa A và B)
mà AB=DC(Hai cạnh đối của hình bình hành ABCD)
và ED=FB(cmt)
nên EC=FA
Xét tứ giác ECFA có
EC=FA(cmt)
EA=CF(cmt)
Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Cho hình bình hành ABCD Vẽ AH vuông góc với BC tại E CF vuông góc với BD Tại F a). Chứng minh AECF là hình bình hành b). Gọi M là giao của AE và CD, n là giao của CF bà AB.Gọi O là trung điểm của AC chứng minh M,O,N thẳng hàng
Cho hình bình hành ABCD. Từ A, kẻ đường thẳng vuông góc với BD tại E và cắt DC tại M. Từ C, kẻ đường thẳng vuông góc BD tại F và cắt AB tại N. Gọi I là trung điểm EF.
a) Chứng minh: AE=CF ; AF=CE
b) Chứng minh: M và N đối xứng với nhau qua I
1) Cho hình thang ABCD( AB > AD). Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD theo thứ tự M,N
a) CMR: OM = ON
b) CMR: DMBN là hình gì ? Vì sao ?
c) CMR: AN// CM
2) Cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB,BC,CA,AD.
a) CMR: tứ giác MNPQ là hình bình hành
b) Gọi M trung điểm DB. biết AD=6, AB=8. Cho AM= 1/2 DB. Tính QM ?
3) Cho Hình bình hành ABCD( AB>AD) . Kẻ AE, CF lần lượt vuông góc vs BD tại E,F.
a) CMR: AEDF là hình bình hành
b) AE kéo dài cắt CD tại K, CF kéo dài cắt AB tại H. Chứng tỏ rằng AC, BD,HK đồng quy.