phân tích các đa thức sau thành nhân tử :
x^2+5x+4
phân tích các đa thức sau thành các nhân tử : x4-5x2+4
\(x^4-5x^2+4=x^4-x^2-4x^2+4=x^2\left(x^2-1\right)-4\left(x^2-1\right)=\left(x^2-4\right)\left(x^2-1\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
Ta có : x4 - 5x2 + 4
= x4 - x2 - 4x2 + 4
= x2(x2 - 1) + (4x2 - 4)
= x2(x2 - 1) + 4(x2 - 1)
= (x2 - 1)(x2 + 4)
\(x^4-5x^2+4=\left(x^4-4x^2\right)-\left(x^2-4\right)=x^2\left(x^2-4\right)-\left(x^2-4\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
Phân tích các đa thức sau thành nhân tử: x^4+2x^3+5x^2+4x-12
Có thể chi tiết ra ko bạn, mình cảm ơn.
\(x^4+2x^3+5x^2+4x-12\)
\(=\left(x^4+2x^3+x^2\right)+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)+2\left(x^2+x-2\right)\)
\(=\left(x^2+x+2\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x+2x-2\right)\)
\(=\left(x^2+x+2\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+2\right)\)
Phân tích các đa thức sau thành nhân tử 3x(x-2)-x+2+5x(x-2)
\(3x\left(x-2\right)-x+2+5x\left(x-2\right)=\left(x-2\right)\left(8x-1\right)\)
\(3x\left(x-2\right)-x+2+5x\left(x-2\right)=3x\left(x-2\right)-\left(x-2\right)+5x\left(x-2\right)=\left(x-2\right)\left(3x=1+5x\right)=\left(x-2\right)\left(8x-1\right)\)
a)rút gon các đa thức sau: (x+3)(x – 3) – (x – 3)2
b) phân tích đa thức thành nhân tử: x 2 – y 2 – 5x +5y
\(a,=x^2-9-x^2+6x-9=6x-18\\ b,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)
Phân tích các đa thức sau thành nhân tử:
1. \(x^3-x^2+5x+125\)
2. \(x^2+2x^2-6x-27\)
1.
= (x^3 + 125 ) -(x^2 +5x)
=(x +5) (x^2 -5x +25) -x(x+5)
=(x+5)(x^2 -5x +25 -x)
=(x+5)(x^2 -6x +25)
2.
= (x^3 -27) + (2x^2 -6x)
=(x-3) (x^2 +3x +9) +2x (x-3)
=(x-3) (x^2 +3x +9 +2x)
=(x-3) (x^2 +5x +9)
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Phân tích đa thức thành nhân tử:
a)xy+3x-7y-21
b)2xy-15-6x-5y
c)2x^2y+2xy^2-2x-2y
Phân tích các đa thức sau thành nhân tử:
x(x+3)-5x(x-5)-5(x+3)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
a) xy+3x-7y-21=(xy+3x)-(7y+21)= x(y+3)-7(y+3)=(y+3)(x-7)
b)2xy-15-6x+5y=(2xy-6x)+(5y-15)=2x(y-3)+5(y-3)=(y-3)(2x+5)
c)2x^2y+2xy^2-2x-2y=2xy(x+y)-2(x+y)=2(x+y)(xy-1)
d) x(x+3)-5x(x-5)-5(x+3)=[x(x+3)-5(x+3)]-5x(x-5)=(x+3)(x-5)-5x(x-5)=(x-5)(x+3-5x)=(x-5)(3-4x)