Cho b>a>0. Thỏa mãn: 3a^2 +b^2 =4ab
Tính A= a-b/a+b
cho a và b thỏa mãn a^3+b^3+3a^2+b^2)+4(a+b)+4=0 tính M=2018(a+b)^2
Cho a,b là các số thực thỏa mãn \(a^2+ab+b^2-b=0\).Chứng minh:
\(A=3a^5+b^4< 4\)
\(a^2+ab+b^2-b=0\)
\(\Delta=b^2-4\left(b^2-b\right)\ge0\Leftrightarrow-3b^2+4b\ge0\Rightarrow0\le b\le\dfrac{4}{3}\)
\(b^2+\left(a-1\right)b+a^2=0\)
\(\Delta=\left(a-1\right)^2-4a^2\ge0\Rightarrow-3a^2-2a+1\ge0\Rightarrow-1\le a\le\dfrac{1}{3}\)
\(\Rightarrow A=3a^5+b^4\le3.\left(\dfrac{1}{3}\right)^5+\left(\dfrac{4}{3}\right)^4=\dfrac{257}{81}< 4\)
Cho a,b thỏa mãn : a^3 - 3a^2 + 5a - 17=0 và b^3 - 3b^2 + 5b -11 = 0
tính a^2 +b^2
Cho a và b khác nhau và khác 0 thỏa mãn 3a^2+4b^2 =7ab.Tính giá trị của E=a+2b/3a-b
\(3a^2+4b^2=7ab\)
\(\Rightarrow3a^2+4b^2-7ab=0\)
\(\Rightarrow3a^2-3ab-4ab+4b^2=0\)
\(\Rightarrow3a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(3a-4b\right)=0\)
Mà \(a\ne b\Rightarrow a-b\ne0\)
Từ đó \(3a-4b=0\Rightarrow3a=4b\Rightarrow a=\frac{4}{3}b\)
\(E=\frac{a+2b}{3a-b}=\frac{\frac{4}{3}b+2b}{3.\frac{4}{3}b-b}=\frac{10}{9}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho a, b là hai số thực đồng thời thỏa mãn b – a – 2 = 0 và 3 a . 2 b = 3 - 2 . Tính b - 5 a
Cho a, b là hai số thực đồng thời thỏa mãn b – a – 2 = 0 và 3 a . 2 b = 3 - 2 Tính b – 5 a
A. 10
B. -2
C. 15
D. 8
Cho a,b,c khác 0 thỏa mãn: a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2
tính A=(1+a/b)(1+b/c)(1+c/a)
Đặt ab = x, bc = y, ca = z (x, y, z ≠ 0 thỏa mãn x^3 + y^3 + z^3 = 3xyz)
⇔ (x+y)^3 − 3xy(x + y) + z^3 = 3xyz <=> (x+y)^3 − 3xy(x + y) + z^3 = 3xyz
⇔ (x + y)^3 + z^3 − 3xy(x + y+ z) = 0 ⇔ (x + y)^3 + z^3 − 3xy(x + y + z) = 0
⇔ (x + y + z)[(x + y)^2 − z (x + y) + z^2] − 3xy(x + y + z) = 0 ⇔ (x + y + z)[(x + y)^2 − z(x + y) + z2] − 3xy(x + y + z) = 0
⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0 ⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0
<=> x + y + z = 0 (1) và x^2 + y^2 + z^2 − xy − yz − xz = 0 (2)
Với (1): ⇔ ab + bc + ac = 0 ⇔ ab + bc + ac = 0
P = (1 + a/b)(1 + b/c)(1 + c/a) = (a + b)(b + c)(c + a)/abc=(ab + bc + ac)(a + b + c) − abc/abc = 0 − abc/abc = −1
Với (2) ⇔ (x − y)^2 + (y − z)^2 + (z − x)^2/2 = 0
⇔ (x − y)^2 + (y − z)^2 + (z − x)^2 = 0
Ta thấy (x − y)^2; (y − z)^2; (z − x)^2 ≥ 0 ∀x, y, z nên để tổng của chúng bằng 0 thì:
(x − y)^2 = (y − z)^2 = (z − x)^2 = 0 ⇒ x = y = z
⇔ ab = bc = ac ⇔ a=b=c (do a, b, c ≠ 0)
⇒ A = (1 + 1)(1 + 1)(1 + 1) = 8
Vậy...........