chứng tỏ A = 4a + 12
với a > 1 và a thuộc N không phải là số nguyên tố
1. chứng tỏ ràng
a mọi số nguyên tố lớn hơn 2 đều viết dưới dang 4n+1 hoặc 4n-1(n thuộc N*)
b có phải mọi số tự nhiên có dang 4n +1 hoặc 4n -1 (n thuộc N* ) đều là số nguyên tố hay không
2. các số sau là số nguyên tố hay hợp số
A= 123456789 +729
B= 5.7.9.11+ 132
1. chứng tỏ rằng
a . Mọi số nguyên tố lớn hơn 2 đều viết dưới dạng 4n+ 1 hoặc 4n-1( n thuộc n*)
b. Có phải mọi số tự nhiên có dạng 4n+1 hoặc 4n-1 ( n thuộc N*) đều là số nguyên tố hay không
VD: 25=4.6+1=52
15=4.4-1=3.5
Bạn chỉ cần lấy ví dụ đơn giản cho bài như thế là được
kho nhi . ba con co bacoi cho con xin ot cai ****
a)chứng tỏ rằng với mọi số nguyên tố lớn hơn 3 đều được viết dưới dạng 6n + 1 hoặc 6n - 1 (n thuộc N*) ?
b) có phải mọi số có dạng 6n + 1 hoặc 6n - 1 đều là số nguyên tố không?
a) Mọi số tự nhiên m > 3 đều viết được một trong các dạng :
6n - 2 ; 6n - 1 ; 6n ; 6n + 1 ; 6n + 2 ; 6n + 3 (n thuộc N*)
Trong các số trên , các số 6n - 2 ; 6n ; 6n + 2 ; 6n + 3 là hợp số .
Vậy số nguyên tố lớn hơn 3 có dạng 6n - 1 và 6n + 1.(n thuộc N*)
b) không . Ví dụ 6 . 4 + 1= 25 là hợp số
uululjuljguljgguljgghuljgghuuljgghuguljgghugyuljgghugytuljgghugytuuljgghugytuuuljgghugytuuuuljgghugytuuuuuljgghugytuuuuuuljgghugytuuuuuiuljgghugytuuuuuiiuljgghugytuuuuuiiduljgghugytuuuuuiidtuljgghugytuuuuuiidtu tththhthhgthhgfthhgfcthhgfcg\(\orbr{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\phi^{ }}\)
Cho A=1+5+......+5^2015
a, chứng tỏ rằng 4A+1 là lũy thừa của 5
4A+1 có phải là số chính phương không?
A có phải là số chính phương không?
b, Tìm x,y thuộc n biết biết 4A+1=5^x ; 4A+1=25^y
c,Chứng minh A chia hết cho 6. tìm số dư của x khi chia cho 31
Cho p và 8p-1 là số nguyên tố chứng tỏ rằng 8p+1 là hợp số
Cho a và n thuộc N và an chia hết 5
chứng minh rằng a2+150chia hết 25
Tìm số nguyên tố p sao cho p+2 và p+8 là số nguyên tố
Chứng tỏ rằng 2 số a+1 và 3a+4 (a thuộc N) là 2 số nguyên tố cùng nhau.
Gọi d là ƯCLN của a+1 và 3a+4
=>a+1 và 3a+4 chia hết cho d
=>(3a+4)-3(a+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(a+1,3a+4)=1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
Gọi UCLN (a+1;3a+4)=d
=>a+1:d; 3a+4:d=>(3a+4)-(a+1):d
=>(3a+4)-3(a+1):d=>3a+4-3a-3:d=>1:d=>d =1 hoặc d = -1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
phân tích, ta có: 3a+4=(3a+3)+1=3(a+1)+1(*)
ta thấy 3(a+1)là bội của a+1 và nguyên tố cùng nhau như (*) nên a+1 và 3a+4 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng hai số a+1 và 3a+4 ( a thuộc N) là hai số nguyên tố cùng nhau
Đặt ƯCLN(a + 1;3a + 4) = k => (a + 1) ⋮ k, (3a + 4) ⋮ k. Vì (a + 1) ⋮ k => 3(a + 1) ⋮ k hay (3a + 3) ⋮ k => Ta có: (3a + 4) - (3a + 3) = 1 ⋮ k. Để hai số NTCN thì ước nguyên dương lớn nhất phải bằng 1. Vậy a + 1 và 3a + 4 là hai số nguyên tố cùng nhau (đpcm)
Chứng tỏ rằng mọi số nguyên tố lớn hơn 3 đều được viết dưới dạng 6n+1 hoặc 6n-1 (n thuộc N*).
Có phải mọi số có dạng 6n+1 hoặc 6n-1 ( n thuộc N* ) đều là số nguyên tố hay không ?
a) Vì \(\left\{{}\begin{matrix}6n⋮3\\6n+2=2\left(3n+1\right)⋮2\\6n-2=2\left(3n-1\right)⋮2\\6n\pm3=3\left(n\pm1\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(6n;6n\pm2;6n\pm3\right)\) là các hợp số
Nên \(n>3\) thì các số nguyên tố có thể là \(6n+1\) hoặc \(6n-1\)
b) \(6n+1\) hoặc \(6n-1\left(n\inℕ^∗\right)\) không đêu là số nguyên vì \(6.4+1=25\left(n=4\right)\) là hợp số.
Chứng tỏ rằng
a,Hai số tự nhiên liên tiếp n và n-1 (n thuộc n*) là số nguyên tố cùng nhau
b,2n +1 và 14n +6 ( n thuộc n* ) là hai số nguyên tố cung nhau
Gọi:
d=UCLN(n,n-1)
Ta có: n chia hết cho d
n-1 chia hết cho d
=> n-(n-1) chia hết cho d
=> 1 chia hết cho d=> d=1
Vậy: n và n-1 ntcn
b) gọi như vậy ta có:
7(2n+1)-14n+6 chia hết cho d
=> 1 chia hết cho d=>d=1
Vậy 2n+1 và 14n+6 ntcn