Cho tứ giác ABCD có \(\widehat {DAB} = \widehat {BC{\rm{D}}};\widehat {ABC} = \widehat {C{\rm{D}}A}\). Kẻ tia Ax là tia đối của tia AB. Chứng minh:
a) \(\widehat {ABC} + \widehat {DAB} = {180^o}\)
b) \(\widehat {xA{\rm{D}}} = \widehat {ABC};AC//BC\)
c) Tứ giác ABCD là hình bình hành.