cmr:
nếu (a+b+c)^2=3(ab+bc+ac)thì a=b=c
CMR:Nếu a,b,c là các số khác 0 thỏa mãn\(\frac{ab+ac}{2}\)=\(\frac{bc+ba}{3}\)=\(\frac{ca+cb}{4}\)thì\(\frac{a}{3}\)=\(\frac{b}{5}\)=\(\frac{c}{15}\)
CMR:Nếu a2 =bc thì :
(a + b)/(a-b)=(c+a)/(c-a)
Lời giải:
$a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$
Đặt $\frac{a}{c}=\frac{b}{a}=k\Rightarrow a=ck; b=ak$
Khi đó:
$\frac{a+b}{a-b}=\frac{a+ak}{a-ak}=\frac{a(1+k)}{a(1-k)}=\frac{1+k}{1-k}(1)$
$\frac{c+a}{c-a}=\frac{c+ck}{c-ck}=\frac{c(1+k)}{c(1-k)}=\frac{1+k}{1-k}(2)$
Từ $(1); (2)$ ta có đpcm.
CMR:Nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\) thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
easy!tôi biết làm nha!đăng chơi thôi!đừng bảo tôi ngu!
đăng chơi thôi!
Phạm Cong Anh đã ngu thì đừng sủa.có giỏi thì làm đi!
tốn giấy olm.Con thỏ trắng có bộ lông đen thui:mik đăng chơi nhé!đố mấy bạn thôi ak!
Cho P=(a+b+c)(ab+bc+ca)+abc
a)Phân tích P thành nhân tử
b)Cmr:Nếu a,b,c là các số nguyên mà a+b+c chia hết cho 6 thì P- 4abc cũng chia hết cho 6
Cho a+1/b=b+1/c =c+1/a
a,Cho a =1,tìm b,c
b,cmr:nếu a,b,c đôi 1 khác nhau thì a^2.b^2.c^2=1
c,cmr:nếu a,b,c>0thif a=b=c
CMR:nếu a+b+c=2p thì b2+c2+2bc-a2=4p(p-a)
Tìm giá trị lớn nhất của biểu thức Q=-x2+6x+1
CMR: nếu a2+b2+c2=ab+bc+ca thì a=b=c
CMR nếu (a2+b2)(x2+y2)=(ax+by)2 thì ay-bx=0
Bạn ơi phải có điều kiện nữa thì mới làm được
a) ta có 4p(p-a)=2(a+b+c){(a+b+c)/2}=(a+b+c)(a+b+c)=b2+2bc+c2+a2(đpcm)
Chứng minh rằng nếu:
a) \(a^2+b^2+c^2=ab+ac+bc\)thì a = b = c
b) \(a^3+b^3+c^3=3abc\)thì a = b = c hoặc a+ b +c = 0
c) a + b +c = 0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c
a)\(a^2+b^2+c^2=ab+bc+ca\)\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
b)\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
CMR: Với các số thực dương a;b;c thì\(\dfrac{a^3+2abc+b^3}{c^2+ab}+\dfrac{a^3+2abc+c^3}{b^2+ac}+\dfrac{b^3+2abc+c^3}{a^2+bc}\ge2\left(a+b+c\right)\)
Thực hiện phép tính (a+b)(a^2+b^2-c^2-ab-bc-ac) và chứng minh rằng nếu a^3+b^3+c^3=3abc thì a=b=c hoặc a+b+c +0