tìm các số nguyên x và y,biết : 5/x + y/4 = 1/8
a) tìm các số nguyên x y biết
(x-3)(xy-1)=7
b)tìm các số nguyên x y biết
y<0 và (x-3)×y=5
c)Tìm các Ư của A biết
A=1-4+5-8+9-12+...+27-30
d) tìm số nguyên x biết
(X-10)+(x-9)+(x-8)+...+(x-1)=-2015
Tìm các số nguyên x và y, biết rằng: 5/x+y/4=1/8
5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
CHÚC BẠN HỌC TỐT
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{20+xy}{4x}=\frac{1}{8}\)
8( 20 + xy ) = 4x
2( 20 + xy ) = x
40 + 2xy = x
40 = x - 2xy
-40 = 2xy - x
2xy - x = -40
x( 2y - 1 ) = -40
Ta thấy 2y - 1 là ước lẻ của 40. Ta có:
2y-1 | -5 | -1 | 1 | 5 |
x | 8 | 40 | -40 | -8 |
y | -2 | 0 | 1 | 3 |
x | 8 | 40 | -40 | -8 |
Ta có các cặp số ( x;y ) là: ( 8;-2 ) ; ( 40;0 ) ; ( -40;1 ) ; ( -8;3 ).
tìm các số nguyên x,y biết:5/x+y/4=1/8
=>(20+xy)/4x=1/8
=>160+8xy=4x
=>x=2xy+40
=>x-2xy=40
=>x(1-2y)=40
=>(x;1-2y) thuộc {(40;1); (-40;-1); (8;5); (-8;-5)}
=>(x,y) thuộc {(40;0); (-40;1); (8;-2); (-8;3)}
5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
Tìm các cặp số nguyên x và y biết: \(\dfrac{x}{4}-\dfrac{3}{y}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{xy-12}{4y}=\dfrac{5}{8}\)
=>2(xy-12)=5y
=>2xy-24=5y
=>2xy-5y=24
=>y(2x-5)=24
mà x,y là số nguyên
nên \(\left(2x-5;y\right)\in\left\{\left(1;24\right);\left(-1;-24\right);\left(3;8\right);\left(-3;-8\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;24\right);\left(2;-24\right);\left(4;8\right);\left(1;-8\right)\right\}\)
Tìm các số nguyên x và y biết: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Tìm các số nguyên x, y biết rằng: (5/x)+(y/4)=1/8?
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}=>\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}=>x\left(1-2y\right)=5.8=40\)
ta có:1-2y là ước lẻ của 40
=>1-2y thuộc {01;1;-5;5}
thay vào rồi tìm x
(5/x)+(y/4)=1/8
<=>(5/x)+(2y/8)=1/8
<=>(5/x) =(1/8)-(2y/8)
<=>(5/x) =(1-2y/8)
=>x=8; (1-2y)=5 =>2y =1-5
Mà y thuộc Z =>2y thuộc Z =>2y = - 4
=>y=(-4):2= - 2. Vậy x = 8; y= - 2
Tìm các số x,y nguyên biết:
a,x/8-1/y=1/4
b,5/x+y/4=1/8
\(a,\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{x}{8}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{x-2}{8}\)
\(\Rightarrow\left(x-2\right)\cdot y=1\cdot8\)
\(\Rightarrow y\left(x-2\right)=8\)
xét bảng :
x-2 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 |
y | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 1 | 3 | 0 | 4 | -2 | 6 | -6 | 10 |
vậy_
b, tương tự
\(a,\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x}{8}-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x}{8}-\frac{2}{8}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x-2}{8}\)
\(\Leftrightarrow y(x-2)=8\)
Vì \(x,y\inℤ\)nên \(x-2\inℤ\), ta có bảng sau:
y | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x - 2 | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | -6 | 10 | -2 | 6 | 0 | 4 | 1 | 3 |
\(b,\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow x(1-2y)=40\)
Vì \(x,y\inℤ\)nên \(1-2y\inℤ\), ta có bảng sau :
x | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 | 10 | -10 | 20 | -20 | 40 | -40 |
1 - 2y | -40 | 40 | -20 | 20 | -10 | 10 | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
y | loại | loại | loại | loại | loại | loại | loại | loại | loại | loại | loại | loại | 1 | 0 |
Vậy : ...
Tìm các số nguyên x và y biết rằng :
5/x +y/4=1/8
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}=>\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x.(1-2y)=5.8=40
Vì 2y là số chẵn => 1-2y là số lẻ hay 1-2y là ước lẻ của 40
=>1-2y \(\in\) {1;-1;5;-5}=>2y \(\in\) {0;2;-4;6}=>y \(\in\) {0;1;-2;3}
=>x \(\in\) {40;-40;8;-8}
Vậy ..................
tìm các số nguyên x , y biết 5\x + 4\y = 1\8
\(\frac{5}{x}+\frac{4}{y}=\frac{5y+4x}{xy}=\frac{1}{8}\)
=> 40y + 32x = xy
=> 40y - xy = 32x
=> y(40-x) = 32x
=> 32*40 - y(40-x) = 32*40-32x
=> 1280 - y(40-x) = 32(40-x)
=> 1280 = 32(40-x)+y(40-x)=(32+y)(40-x)
1280 = Thế từng cặp ra