Chứng minh đẳng thức: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
Chứng minh đẳng thức : \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{6}\)
\(\sqrt{9-6\sqrt{6}+6}+\sqrt{9+6\sqrt{6}+6}\\ =\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3+\sqrt{6}\right)^2}=6\)
sửa lại lúc nhìm nhầm
\(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{24-12\sqrt{6}+3}\\ =3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
\(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{24-12\sqrt{6}+3}\\ =3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Đây là sửa lại ko phải chứng minh đâu nhé
* Chứng minh đẳng thức
\(\left(\dfrac{\sqrt{30}-\sqrt{20}}{\sqrt{3}-\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}=2\)
\(=\left(\dfrac{\sqrt{10}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{6^2}}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5+2\sqrt{3}\sqrt{5}+3}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)
\(VT\Leftrightarrow\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2=VP\left(dpcm\right)\)
\(\left(\dfrac{\sqrt{30}-\sqrt{20}}{\sqrt{3}-\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}=\left(\dfrac{\sqrt{10}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)\)
\(=5-3=2\)
chứng minh đẳng thức:\(\left(4+\sqrt{15}\right).\left(\sqrt{10}\sqrt{6}\right)\sqrt{4-\sqrt{15}=2}\)
Lời giải:
$(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}$
$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}$
$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}$
$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})$
$=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})$
$=2(4^2-15)=2$ (đpcm)
Rút gọn biểu thức
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Chứng minh đẳng thức:
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(4\sqrt{\frac{1}{2}}+12\right)=-14\sqrt{2}\)
Chứng minh các đẳng thức:
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)=1
b)\(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)-1 =0
c) \(\sqrt{26+15\sqrt{3}}+\sqrt{26-15\sqrt{3}}-5\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{2}\)
a)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=1\)\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
\(\Leftrightarrow\sqrt{1}=1\) (đpcm)
\(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}-1=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{3}}-1=0\)
\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)-1=0\)
\(\Leftrightarrow\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2-1=0\)
\(\Leftrightarrow3-2-1=0\) (đpcm)
Chứng minh đẳng thức
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}=\sqrt{3}+\sqrt{2}+1\)
chứng minh đẳng thức
\(\sqrt{6+\sqrt{24}+\sqrt{12+\sqrt{8}}=\sqrt{3}+\sqrt{2}+1}\)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}=\sqrt{3+2+1+\sqrt{2^2.2.3}+\sqrt{2^2.3}+\sqrt{2^2.2}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2+1^2+2\sqrt{3}.\sqrt{2}+2\sqrt{3}.1+2\sqrt{2}.1}=\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}\)
(áp dụng hằng đẳng thức (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc)
\(=\sqrt{3}+\sqrt{2}+1\)
bài 5 sử dụng hằng đẳng thức bình phương một tổng ( hiệu) để khai phương
a)\(\sqrt{7+4\sqrt{3}}\)
b)\(\sqrt{8-2\sqrt{12}}\)
c)\(\sqrt{21+6\sqrt{6}}\)
d)\(\sqrt{15-6\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
g)\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)