Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Phước
Xem chi tiết
Đinh thủy tiên
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 12:12

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

NGUYỄN THỊ TUYẾT NHUNG
12 tháng 3 2023 lúc 21:40

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

Trung Kiên
Xem chi tiết
hải nguyễn
30 tháng 3 2016 lúc 21:14

ngu như bò phân tích 2 cái đăng sau nó chia hết cho 18 cái thứ nhất chia hết cho 5 mà hai số có uwcln là 1 suy ra đpcm

Trung Kiên
31 tháng 3 2016 lúc 19:57

phaan tích hộ cái

Tran Nguyen Thai Ha
Xem chi tiết
Thắng Nguyễn Chí
Xem chi tiết
Nguyễn Tường Vi
22 tháng 4 2017 lúc 13:37

mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17

nguyen ba tuanduc
9 tháng 7 2017 lúc 11:59

62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17

vay bt chia het 17

Đỗ Phương Anh
Xem chi tiết
Nguyen Minh Hieu
14 tháng 9 2021 lúc 20:11

a) Ta có:

\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).

b) Ta có:

\(20^{n+1}-20^n=20^n\cdot19\)

Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)

Nguyễn Hà Anh
Xem chi tiết
Huỳnh Quang Sang
28 tháng 11 2018 lúc 9:29

Đặt  \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)

          \(=n^2(n^4-1+n^2-1)\)

          \(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)

          \(=n^2(n^2-1)(n^2+2)\)

          \(=n\cdot n(n-1)(n+1)(n^2+2)\)

           + Nếu n chẵn ta có n = 2k \((k\in N)\)

\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)

\(\Rightarrow A⋮8\)

             

+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)

\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)

\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)

k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 

\(\Rightarrow A⋮8\)

Do đó A chia hết cho 8 với mọi \(n\in N\)

* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n \(\in N\)

Chúc bạn học tốt :>

Sakura
Xem chi tiết
alibaba nguyễn
21 tháng 10 2016 lúc 20:03

Đề sai

roronoa zoro
Xem chi tiết
Lê Nhật Khôi
9 tháng 1 2018 lúc 17:49

Sử dụng đồng dư

Ta có:

\(\left(n+5\right)\left(n-2\right)+21=n^2+5n-2n-10+21=n^2+3n+11\)

Giả sử:

\(n^2\equiv49\)(mod 49)

\(n\equiv7\)(mod 49)

Ta có:

\(\left(n+5\right)\left(n-2\right)+21\equiv7^2+3\cdot7+11\equiv81\)(mod 49)

Mà 81 ko chia hết cho 49 nên

Kết luận ......................