1/1.2.3+...+1/2019.2020.2021
Tính bằng cách hợp lý: a) M = 1.2 + 2.3 + 3.4 + …. +2 020.2021 b) N= 1.2.3+ 2.3.4 + …. + 2019.2020.2021
Cmr : 1 + 1/1.2 + 1/1.2.3 + .....+ 1/1.2.3....n < 2
Nhận thấy 1/1.2.3 = 1/2.3; 1/1.2.3.4 < 1/3.4; 1/1.2.3.4.5 < 1/4.5; 1/1.2.3...n < 1/n(n-1)
=> 1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 1 + 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n-1)
=> 1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 1 + 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/n-1 - 1/n
=>1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 2 - 1/n < 2
=> đpcm
Cmr : 1 + 1/1.2 + 1/1.2.3 + .....+ 1/1.2.3....n < 2
Cmr : 1 + 1/1.2 + 1/1.2.3 + .....+ 1/1.2.3....n < 2
Chứng tỏ: 1/1.2+1/1.2.3+1/1.2.3.4+...+1/1.2.3...100<1
Tính nhanh: 1+1.2+1.2.3+1.2.3.4+...+1.2.3...99+1.2.3....100
tính tổng dãy số thì dễ nhưng hãy viết rõ ràng hơn
A= 1+1/1.2 + 1/1.2.3 +......+1/1.2.3.n <1+1/1.2 +1/1.3+......+1/k(k+1)
A=1+1/1.2+1+1/1.2.3+.......+1/1.2.3.n < 1+1/1.2+1/2.3+.......+1/k(k+1)
\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2018}\)