tìm x, y ,z sao cho xyz=x+y+z
Cho x,y,z là các số hữu tỉ khác 0 sao cho x+y-z/z=x-y+z/y=-x+y+z/x.
Tìm giá trị của biểu thức P=(x+y)(y+z)(z+x)/xyz
Cho hỏi ko phải cô giáo có dc làm ko:v
Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)
\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)
Xét \(x+y+z\ne0\) ta có:
\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)
\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)
\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó:
\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)
giúp mình với , các cô giáo ơi giúp con con ko làm được ạ lát nữa con phải nộp rồi
Tìm x,y,z thuộc N* sao cho xyz -x-y-z=5
Tìm các số nguyên x, y, z sao cho : x+y+z=xyz
Gỉa sử \(1\le x\le y\le z\) khi đó từ pt suy ra xyz=x+y+z \(\le\)3z => xy\(\le\)3
\(\Rightarrow x.y=\left\{1;2;3\right\}\)
Nếu xy=1 thì \(x=y=1\Rightarrow2+z=z\left(vl\right)\)
Nếu xy=2 => \(x=1;y=2;z=3\)
Nếu xy=3 => \(x=1;y=3;z=2< y\)( trái với giả sử )
Vậy x;y;z là hoán vị của (1;2;3)
@ Huy @ Sao có thể giả sử: \(1\le x\le y\le z\) ????
Nếu đề bài cho là tìm các số nguyên dương em mới đc phép làm vậy nhé!
tìm các số tự nhiên x,y,z (x>y>z) sao cho xyz-xy-yz-zx+x+y+z=2020
Tìm các số tự nhiên x,y,z biết x>y>z sao cho xyz-xy-yz-zx+x+y+z=2020
ko vt lại đề
(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019
=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019
=> (z-1)(xy-y-x+1)=2019
=> (z-1)(z-1)(y-1)=2019
vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1
nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}
(x-1)(y-1)(z-1)= 673.3.1=2019
=> x-1=673=>x=674
=>y-1=3=>y=4
=> z-1 =1=>z=2
Vậy x=674,y=4,z=2
Tìm tất cả các số nguyên dương x; y; z sao cho xyz = 9 + x + y + z
làm đc thì giỏi. Ko làm đc cũng chả sao cả. Biết làm rồi
giải ra cho mk tham khảo đi được ko?????? mk ko bít
5447564
1. Tìm x,y,z nguyên sao cho:
x^3+xyz=957
y^3+xyz=795
z^3+xyz=579
2.Tìm các số tự nhiên x,y biết:
2^x-2^y=1984
Bài 1:
Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho
Xét x3+xyz=x(x2+yz)=579 -->x lẻ.
Tương tự xét
y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ
Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài
Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho
Bài 2:
Ta có: VP=1984
Vì 2x-2y=1984>0 =>x>y
=>VT=2x-2y=2y(2x-y-1)
pt trở thành:
2y(2x-y-1)=26*31
\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)
Từ pt (1) =>y=6
Thay y=6 vào pt (2) đc:
2x-6-1=31 => 2x-6=32
=>2x-6=25
=>x-6=5 <=>x=11
Vậy x=11 và y=6
Tìm x,y,z thuộc Z sao cho:x+y+z=xyz
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)