cho ba số a,b,c là ba số dương nhỏ hơn 2,chứng minh: ba số a(2-b) ; b(2-c) ; c(2-a) không đồng thời lớn hơn 1
Cho ba số dương 0 nhỏ hơn hoăc bằng a nhỏ hơn hoăc bằng b nhỏ hơn hoặc bằng c nhỏ hơn hoặc bằng 1.Chứng minh rằng
a/bc+1 +b/ac+1 + c/ab+1 nhỏ hơn hoăc bằng 2
cho a,b,c ≥ 0 trong đó có ít nhất hai số dương. Chứng minh rằng căn bậc ba của a+b+c + căn bậc ba của b/c+a + căn bậc ba của c/a+b ≥2
Cho $a$, $b$, $c$ là các số dương thỏa mãn $abc = 1$. Chứng minh rằng nếu $a + b + c > \dfrac1a + \dfrac1b + \dfrac1c$ thì có một và chỉ một trong ba số $a$, $b$, $c$ lớn hơn $1$.
Tham khảo:
Gỉa sử : a+b+c> 1/a + 1/b + 1/c nhưng không thỏa mãn một và chỉ một trong 3 số a,b,c lớn hơn 1
*TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1)
*TH2: có 2 số lớn hơn 1
Gỉa sử: a>1, b>1, c<1 <=> a-1>0 , b-1>0 , c-1<0
=> (a-1)(b-1)(c-1)<0
=>abc+a+b+c-(ab+bc+ca)-1<0
<=>a+b+c<ab+bc+ca
<=>a+b+c<abc/c+abc/a+abc/b
Thay abc=1 ta được:
a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai)
=>đpcm
Trường hợp 1: Giả sử ba số , , đều lớn hơn hoặc ba số , , đều nhỏ hơn .
Khi đó
a.b.c (trái với giả thiết).
Trường hợp 2: Giả sử hai trong ba số , , lớn hơn 1.
Không mất tính tổng quát, giả sử và .
Vì nên do đó:
a + b + c < + \(\dfrac{abc}{a}\) + \(\dfrac{abc}{b}\)
⇔ a + b + c < \(\dfrac{1}{c}\) + \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) (mâu thuẫn với giả thiết)
Vậy chỉ có một và chỉ một trong ba số , , lớn hơn
Cho a,b,c là ba số dương. Chứng minh : a2/b+c + b2/a+c + c2/a+b >/ a+b+c/2
Cho ba số dương a, b, c nhỏ hơn 2. CM: 3 số sau đây không thể đồng thời lớn hơn 1:
x=a(2-b)
y=b(2-c)
z=c(2-a)
cho a,b,c là ba số dương,biết a/b + b/a >=2 . Chứng minh rằng :(a+b+c)(1/a + 1/b + 1/c) >= 9
cho a,b,c là ba số dương, biết a/b + b/a >= 2. chứng minh rằng: (a+b+c)(1/a + 1/b + 1/c) >=9 .
Cho ba số thực dương a,b,c thỏa mãn abc = 1. Chứng minh rằng
\(\left(a^2+b^2+c^2\right)^3\) ≥ 9(a + b + c)
(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)
Cho ba số dương a,b,c có tổng bằng 1. Chứng minh rằng 1/a + 1/b + 1/c lớn hơn hoặc bằng 9
Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)
Cách khác dùng AM-GM
Áp dụng bđt AM-GM cho 3 số không âm ta được:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)
Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)