\(th\text{ực}-hi\text{ện}-ph\text{ép}-t\text{ính}\)
\(\left(2002\right)-\left(57-2002\right)\)
\(TH\text{ỰC}-HI\text{ỆN}-PH\text{ÉP}-T\text{ÍNH}\)
\(6⋮\left(x-1\right)\)
\(6⋮\left(x-1\right)\)
\(\Rightarrow x-1\in\text{ư}\left(6\right)=1.2.3.6\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x-1=2\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x-1=6\)
\(x=1+1=2\)
\(x=1+2=3\)
\(x=1+3=4\)
\(x=1+6=7\)
=> x - 1 \(\in U\left[6\right]\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
x - 1 thuộc Ư { 6 } = { -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 }
Suy ra x thuộc { -5 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 7 }
\(TH\text{ỰC}\)\(HI\text{ỆN}\)\(PH\text{ÉP}\)\(T\text{ÍNH}\)
\(117::\left[2×\left(4^2-9\right)+3^2×\left(15-10\right)\right]\)
CÁC BẠN GIẢI DÙM MÌNH NHA
THực hiện phép tính:
117 : [ 2 x ( 4\(^2\)-9 ) + 3\(^2\). ( 15 - 10 ) ]
= 117 : [ 2 . ( 16 - 9 ) + 9 . 5]
= 117 : 2 . 8 + 45
= 58,5 .8 + 45
= 292,5 + 45
= 337,5
Tk và kb hộ mình nha m.n! thanks
F (x) = 3/2X2 \(choh\text{àm}s\text{ố}\text{đ}\text{ồ}th\text{ị}f\left(x\right)=-\frac{3}{2}x^2+5.t\text{ính f(-4)}\)
\(t\text{ính}t\text{ổng}:\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(A=\frac{3}{\left(1\text{*}2\right)\text{*}\left(1\text{*}2\right)}+\frac{5}{\left(2\text{*}3\right)\text{*}\left(3\text{*}2\right)}+\frac{7}{\left(3\text{*}4\right)\text{*}\left(3\text{*}4\right)}+...............+\frac{19}{\left(9\text{*}10\right)\text{*}\left(10\text{*}9\right)}\)
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Bài 1: Tính
A=\(\sqrt{5-2\text{√}6}+\sqrt{5+2\text{√}6}\)
B= \(\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\text{√}15}\)
C=\(\sqrt{4+\text{√}7}+\sqrt{4-\text{√}7}\)
D=\(\left(3+\text{√}5\right)\left(\text{√}10-\text{√}2\right)\sqrt{3-\text{√}5}\)
Bài 2: Phân tích thành nhân tử
a, ab+ba+√a+1; a>=0
b, x-2\(\sqrt{xy}\)+y \(\left(x\ge0;y\ge0\right)\)
c, \(\sqrt{xy}+2\text{√}x-3\text{√}y-6\)\(\left(x\ge0;y\ge0\right)\)
Bài 3: Rút gọn
M= \(\left(\frac{1}{\text{√}x-1}-\frac{1}{\text{√}x}\right)\div\left(\frac{\text{√}x+1}{\text{√}x-2}-\frac{\text{√}x+2}{\text{√}x-1}\right)\)
a, Rút gọn M
b, Tính giá trị của M khi x=2
c, Tìm x để M>0
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
Bài 3:
a) ĐKXĐ:\(x>0; x\neq 1; x\neq 4\)
\(M=\frac{\sqrt{x}-(\sqrt{x}-1)}{(\sqrt{x}-1)\sqrt{x}}:\frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{(x-1)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b)
Khi $x=2$ \(M=\frac{\sqrt{2}-2}{3\sqrt{2}}=\frac{1-\sqrt{2}}{3}\)
c)
Để \(M>0\leftrightarrow \frac{\sqrt{x}-2}{3\sqrt{x}}>0\leftrightarrow \sqrt{x}-2>0\leftrightarrow x>4\)
Kết hợp với ĐKXĐ suy ra $x>4$
\(\text{Cho }m\left(g\right)\text{ hỗn hợp }X\text{ gồm }Fe;Fe_3O_4;Fe\left(NO_3\right)_2\text{ tan hết trong }320\left(ml\right)NaHSO_41M\\ \text{ thu được dung dịch }Y\text{ chỉ chứa }53,92\left(g\right)\\ \text{ muối trung hòa }\text{ và }0,896\left(l\right)NO\left(đktc\right)\left(sản\text{ phẩm khử duy nhất }\right).\\ \text{ Cho }Y\text{ tác dụng }NaOH\text{ dư thì có }0,44\left(mol\right)NaOH\text{ phản ứng }.\text{ Tính }m\)
Fe_______________________Fe2+
Fe3O4______NaHSO4 0,32 \(\rightarrow\)Fe3+_______+NO 0,04 +H2O
Fe(NO3)2 ________________Na+ 0,32
_________________________SO42- 0,32
_________________________NO3-
_________________________53,92g
Theo bảo toàn H: nNaHSO4=2nH2O=0,32
\(\rightarrow\)nH2O=0,16
Theo bảo toàn khối lượng
m+mNaHSO4=m muối+mNO+mH2O
\(\rightarrow\)m+0,32.120=53,92+0,04.30+0,16.18
\(\rightarrow\)m=19,6
Các bạn giúp mình bài toán sau
\(\left(x+2\right)^3\text{-}\left(x+1\right)\left(x^2\text{-}x+1\right)=10\)
\(\left(x\text{-}1\right)^3\text{-}\left(x\text{-}2\right)\left(x^2+x+4\right).3x\left(x+1\right)=0\)
\(\left(x\text{-}3\right)^2\text{-}\left(x\text{-}2\right)\left(x^2+2x+4\right)\text{-}9x\left(x\text{-}1\right)=0\)
đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)
\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)
TH1: \(x-1=0\Leftrightarrow x=1\)
TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Tính bằng cách thuận tiện nhất:
\(\left(1-\dfrac{1}{2}\right)\text{× }\left(1-\dfrac{1}{3}\right)\text{ × }\left(1-\dfrac{1}{4}\right)\text{ × }\left(1-\dfrac{1}{5}\right)\text{}\text{}\text{× }\left(1-\dfrac{1}{6}\right)\)
Lời giải:
Gọi tích trên là $A$. Ta có:
$A=\frac{1}{2}\times \frac{2}{3}\times \frac{3}{4}\times \frac{4}{5}\times \frac{5}{6}$
$=\frac{1\times 2\times 3\times 4\times 5}{2\times 3\times 4\times 5\times 6}=\frac{1}{6}$