Cho tam giác ABC vuông tại A, góc B=dộ. Trung tuyến BD . Đường thẳng qua A vuông góc BD cắt đường thẳng qua C vuông góc với AC tại E. Tính góc ADE.
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Qua A kẻ đường thẳng d vuông góc với AM. Qua M kẻ các đường thẳng vuông góc với AB và AC, chúng cắt d theo thứ tự D và E. Chứng minh rằng:
a) BD // CE.
b) DE = BD + CE.
a) Ta có: AM là đường trung tuyến (gt). => M là trung điểm của BC.
Xét tam giác ABC vuông tại A: AM là đường trung tuyến (gt).
=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
=> AM = MB = MC = \(\dfrac{1}{2}\) BC (do M là trung điểm của BC).
Xét tam giác AMB có: AM = MB (cmt). => Tam giác AMB cân tại M.
Mà MD là đường cao (MD \(\perp\) AB).
=> MD là phân giác ^AMB (Tính chất các đường trong tam giác cân).
Xét tam giác AMC có: AM = MC (cmt). => Tam giác AMC cân tại M.
Mà ME là đường cao (ME \(\perp\) AC).
=> ME là phân giác ^AMC (Tính chất các đường trong tam giác cân).
Xét tam giác MBD và tam giác MAD có:
+ MD chung.
+ MB = AM (cmt).
+ ^BMD = ^AMD (MD là phân giác ^AMB).
=> Tam giác MBD = Tam giác MAD (c - g - c).
=> ^MBD = ^MAD (2 góc tương ứng).
=> ^MBD = ^MAD = \(90^o\). => BD \(\perp\) AB. (1)
Xét tam giác MAE và tam giác MCE có:
+ ME chung.
+ MC = AM (cmt).
+ ^AME = ^CME (ME là phân giác ^AMC).
=> Tam giác MAE = Tam giác MCE (c - g - c).
=> ^MAE = ^MCE (2 góc tương ứng).
=> ^MAE = ^MCE = \(90^o\). => CE \(\perp\) AB. (2)
Từ (1); (2) => BD // CE (Từ \(\perp\) đến //).
b) Ta có: DE = DA + AE.
Mà DA = DB (Tam giác MBD = Tam giác MAD).
EA = EC (Tam giác MAE = Tam giác MCE).
=> DE = BD + CE (đpcm).
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác ADE cân.
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF.
c) Chứng minh BD = CE.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Kẻ đường trung tuyến AM (MÎBC). Qua M kẻ đường thẳng vuông góc với BC cắt AC tại D.
a) Chứng minh
b) Tính độ dài đoạn thẳng BC và DM.
c) Gọi E là chân đường vuông góc kẻ từ C đến đường thẳng BD. Chứng minh rằng:
CD.CA + BD.BE = BC2
Mọi người giúp em với ạ cần gấp
Cho tam giác ABC có góc A = 105*; góc B = 65*. Tia phân giác góc B cắt AC tại D. Qua A vẽ đường thẳng vuông góc với BD tại O, đường thẳng này cắt BC tại E.
1) Chứng minh tam giác AOB = tam giác EOB
2) Tính góc DAE
3) Chứng minh tam giác ADE vuông cân tại D
Cho tam giác ABC có góc A = 105 độ , góc B = 60 độ . Tia phân giác của B cắt AC tại D . Qua A vẽ đường thẳng vuông góc với BD ở O . Đường thẳng này cắt BC ở E .
a) Chứng minh : Tam giác AOB = tam giác EOB .
b) Tính góc DAE .
c) Chứng minh : Tam giác ADE vuông cân tại D
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E. a) Chứng minh tam giác ADE cân. b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE.
Cho tam giác ABC có góc A = 105 độ , góc B = 60 độ . Tia phân giác của B cắt AC tại D . Qua A vẽ đường thẳng vuông góc với BD ở O . Đường thẳng này cắt BC ở E . Chứng minh 1, tam giác ABE đều 2,tam giác ADE vuông cân
1: Xét ΔABE có
BO là đường cao
BO là đường phân giác
Do đó: ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
2: Xét ΔEBD và ΔABD có
BA=BE
\(\widehat{EBD}=\widehat{ABD}\)
BD chung
Do đó: ΔEBD=ΔABD
Suy ra: DE=DA
hay ΔDEA cân tại D(1)
\(\widehat{CEA}=180^0-60^0=120^0\)
\(\widehat{C}=180^0-105^0-60^0=15^0\)
=>\(\widehat{DAE}=180^0-120^0-15^0=45^0\)(2)
Từ (1) và (2) suy ra ΔDEA vuông cân tại D
cho tam giác ABC cân tại A,góc A nhọn,các đường trung trực của AB,AC cắt nhau tại O.Vẽ hình.
a,chứng minh AO là tia phân giác của góc A
b,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC chúng cắt nhau tai K
c,kẻ BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H.chứng minh A,O,H,K thẳng hàng
a) Gọi G, F lần lượt là chân đường vuông góc từ O kẻ xuống AB và AC
Ta có: O nằm trên đường trung trực của AB(gt)
mà OG⊥AB(gt)
nên G là trung điểm của AB
Ta có: O nằm trên đường trung trực của AC(gt)
mà OF⊥AC(gt)
nên F là trung điểm của AC
Ta có: \(AG=\dfrac{AB}{2}\)(G là trung điểm của AB)
\(AF=\dfrac{AC}{2}\)(F là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AG=AF
Xét ΔAGO vuông tại G và ΔAFO vuông tại F có
AO chung
AG=AF(cmt)
Do đó: ΔAGO=ΔAFO(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{GAO}=\widehat{FAO}\)(hai góc tương ứng)
hay \(\widehat{BAO}=\widehat{CAO}\)
mà tia AO nằm giữa hai tia AB,AC
nên AO là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Xét ΔAOB và ΔAOC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAO}=\widehat{CAO}\)(cmt)
AO chung
Do đó: ΔAOB=ΔAOC(c-g-c)
Suy ra: OB=OC(hai cạnh tương ứng)
Ta có: \(\widehat{ABC}+\widehat{KBC}=\widehat{ABK}\)(tia BC nằm giữa hai tia BA,BK)
nên \(\widehat{ABC}+\widehat{KBC}=90^0\)(1)
Ta có: \(\widehat{ACB}+\widehat{KCB}=\widehat{ACK}\)(tia CB nằm giữa hai tia CA,CK)
nên \(\widehat{ACB}+\widehat{KCB}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}+\widehat{KBC}=\widehat{ACB}+\widehat{KCB}\)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)
nên ΔKBC cân tại K(Định lí đảo của tam giác cân)
Suy ra: KB=KC(hai cạnh bên)
Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{BCE}=\widehat{CBD}\)(hai góc tương ứng)
hay \(\widehat{HBC}=\widehat{HCB}\)
Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)(cmt)
nên ΔHBC cân tại H(Định lí đảo của tam giác cân)
Suy ra: HB=HC(hai cạnh bên)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: HB=HC(cmt)
nên H nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Ta có: KB=KC(cmt)
nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(6)
Từ (3), (4), (5) và (6) suy ra A,O,H,K thẳng hàng(đpcm)