Phân tích đa số a)x^2 - 4x - y^3 + 4 b)x^2 - 2xy + y^2 - z^2 + 2zt - t^2
Phân tích đa thức thành nhân tử:
a) x^2y + 2xy^2 + xy
b) x^3 + x^2 – 4x – 4
c) x^2 – 2x – 15
d) x^2 – 4 + (x – 2)^2
e) x^2 – y^2 + 2x + 1
g) (x + 9)^2 – 36x^2
h) x^2 – 2xy + y^2 – z^2 + 2zt – t^2
i) x^3 – 3x^2 + 3x – 1 – y^3
\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)
c: =(x-5)(x+3)
e: =(x+1-y)(x+1+y)
48. Phân tích các đa thức sau thành nhân tử : a) x² + 4x - y² + 4; 2 c) x² - 2xy + y 2 b) 3x² + 6xy + 3y²-3z²; + 2zt - t².
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
Phân tích các đa thức sau thành nhân tử :
a) \(x^2+4x-y^2+4\)
b) \(3x^2+6xy+3y^2-3z^2\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
a) \(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
b) \(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y+z-t\right)\left(x-y-z+t\right)\)
bài 1: phân tích đa thức thành nhân tử
a)x^2-y^2+2x+1
b)(x+9)^2-36x^2
c)x^2-2xy+y^2-z^2+2zt-t^2
d)x^3-3x^2+3x+1-y^3
a)\(=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
b)\(=\left(x+9\right)^2-\left(6x\right)^2=\left(x+9-6x\right)\left(x+9+6x\right)=\left(-5x+9\right)\left(7x+9\right)\)
c)\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\\ =\left(x-y+z-t\right)\left(x-y-z+t\right)\)
Phân tích đa thức sau thành nhân tử
a)\(x^2+4x-y^2+4\)
b)\(3x^2+6xy+3y^2-3z^2\)
c)\(x^2-2xy+y^2-z^2+2zt-t^2\)
Giải giúp mik nhé !!Cảm ơn m.n
a) \(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
a) x2 + 4x - y2 + 4 = (x2 + 4x + 4) - y2 = (x + 2)2 - y = (x + 2 - y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 - 3z2 = 3(x2 + 2xy + y2 - z2) = 3[(x2 + 2xy + y2) - z2) = 3[(x + y)2 - z) = 3(x + y + z)(x + y - z)2
phân tích đa thức thành nhân tử
\(x^2-y^2+z^2-2zt+2xy-t^2\)
phân tích đa thức thành nhân tử
a) x^2 -y^2+2x+1
b) (x^2+9)^2-36x^2
c)x^2- 2xy+ y^2- z^2+ 2zt- t^2
d) x^3- 3x^2+ 3x-1- y^3
e) x^2+ 7x +12
g) 3x^2 - 8x+ 5
h) x^4 +5x^2- 6
phân tích hạng tử thành nhân tử
1)4x^2+4x+1-9y^2
2) x^2+2xy +y^2-z^2+2zt-t^2
3) 9x^2-9xy-7x+7y
4) 3x-3y+ax-ay
1 \(=\left(4x^2+4x+1\right)-\left(3y\right)^2\)
\(=\left(2x+1\right)^2-\left(3y\right)^2\)
\(=\left(2x+1-3y\right)\left(2x+1+3y\right)\)
2,\(=\left(x^2+2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x+y\right)^2-\left(z-t\right)^2\)
\(=\left(x+y+z-t\right)\left(x+y-z+t\right)\)
3,\(=9x\left(x-y\right)-7\left(x-y\right)\)
\(=\left(x-y\right)\left(9x-7\right)\)
4\(=3\left(x-y\right)+a\left(x-y\right)\)
\(=\left(x-y\right)\left(3+a\right)\)
Phân tích đa thức thành nhân tử
a) (ma+nb)^2+(ax+by)^2+(na-mb)^2+(ay-bx)^2
b) ((x^2+y^2)(z^2+t^2)+4xyzt))^2-((2xy(z^2+t^2)+2zt(x^2+y^3))^2
c) (x+y)^3-1-3(x+y)(x+y-1