Cho tứ giác ABCD . CMR
a) Nếu AB//CD thì các phân giác ngoài của góc A và góc D vuông góc với nhay
b) Nếu các phân giác ngoài của góc A và góc D vuông góc với nhau thì AB//CD
Cho tứ giác A,B,C,D có số đo của các góc A,B,C,D lần lượt tỉ lệ với 1,2,3,4. CMR
a) Tứ giác ABCD là hình thang
b)2 tia phân giác góc A và góc D vuông góc với nhau, 2 tia phân giác góc B và C vuông góc với nhau
a) Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)
mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)
Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)
Ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc trong cùng phía
nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)
hay ABCD là hình thang
Cho tứ giác ABCD có các tia phân giác của góc A và D vuông góc với nhau tại E
a) Tứ giác ABCD là hình gì? Chứng minh
b) Các tia phân giác của các góc B và C cắt nhau tại F. Các tia phân giác của các góc ngoài đỉnh A và D cắt nhau tại M. Các tia phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. Chứng minh 4 điểm M,N,E,F thẳng hàng
c) Cho biết AB = a, BC = b, CD = c, DA= d (a,b,c,d có cùng đơn vị độ dài). CMR: Nếu a+c=b+d thì E trùng với F
Giúp em với ạ, vẽ hình giúp em nhé. Cảm ơn mn ạ
Cho hình thang ABCD (AB//CD). Các đường phân giác ngoài của góc A và D cắt nhau tại E, các đường phân giác ngoài của góc B và góc C cắt nhau tại F. Chứng minh:
a) EF song song với AB và CD.
b) EF có độ dài bằng nửa chu vi hình thang ABCD
a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.
Ta có: A D E ^ = 1 2 D ^ ngoài, D A E ^ = 1 2 A ^ ngoài.
Mà A ^ ngoài + D ^ ngoài = 1800 (do AB//CD)
⇒ A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.
Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.
Chứng minh tương tự, ta được F olaf trung điểm của BN.
Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM
b) Từ ý a), EF = 1 2 ( A B + B C + C D + D A )
a:
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD//AB
b: MN=(AB+M'N')/2
=(AB+M'D+CD+CN')/2
mà M'D=AD và CN'=CB
nên MN=(AB+CD+AD+CB)/2
Hình thang ABCD(AB//CD) có AB=a, BC=b, CD=c, AD=d. các tia phân giác góc A và D cắt nhau tại E. các tia phân giác góc B và góc C cắt nhau tại F. gọi M, N là trung điểm của AD, BC. a. Chứng minh tam giác AED vuông. b. Chứng minh rằng nếu E trùng với F thì a+b=c+d.
cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:
a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.
b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD.
cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:
a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.
b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD
Hình thang ABCD có AB // CD; AB = a, BC = b, CD = c, DA = d. Các đường phân giác của góc ngoài đỉnh A và D cắt nhau tại M, các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. Chứng minh rằng MN // CD
Gọi M' và N' là giao điểm của tia AM và BN với CD.
Ta có: ∠ (M') = ∠ A 2 (sole trong)
∠ A 1 = ∠ A 2 (gt)
⇒ ∠ (M') = ∠ A 1 nên ∆ ADM' cân tại D
* DM là phân giác của ∠ (ADM' )
Suy ra: DM là đường trung tuyến (tính chất tam giác cân)
⇒ AM = MM'
∠ (N') = ∠ B 1 nên ∆ BCN' cân tại C.
* CN là phân giác của ∠ (BCN')
Suy ra: CN là đường trung tuyến (tính chất tam giác cân)
⇒ BN = NN'
Suy ra: MN là đường trung bình của hình thang ABN'M'
⇒ MN // M'N' (tính chất đường trung hình hình thang)
Hay MN//CD
câu1 hẫy điền đ và s :
a. nếu một đường thg cắt 2 đường thg song song thì các tia phân giác của một cặp góc thg cùng phía hoặc ngoài cg phía vuông góc với nhau.
b. các tia phân giác của một cặp góc kề bù nhg k vuông góc với nhau.
c. nếu tia AB và tia AC cg // với đường thg MN thì 3 điểm A,B,C thg hằng và BÂC = 180o
d. các tia phân giác của cặp góc đồng vị // với nhau.
1/Cho hinh thang ABCD có hai đáy là AB và CD (AB<CD).Các tia phân giác cua góc A và góc B cắt nhau tại K,K thuộc CD.Tia phân giác của góc D cắt tia phân giác của góc A tại P.Tia phân giác của góc C cắt tia phân giác của góc B tại Q.cmr:
a)DP vuông góc với AK, CQ vuông góc với BK
b)PQ nằm trên đường trung bình của hình thang ABCD
Ta có : KABˆ=KADˆKAB^=KAD^ ( AK là tia phân giác A^A^ )
Mà KABˆ=AKDˆKAB^=AKD^ ( so le trong )
\Rightarrow AKDˆ=KADˆAKD^=KAD^
\Rightarrow △△ ADK cân tại D
\Rightarrow AD = KD (1)
Lại có : KBAˆ=KBCˆKBA^=KBC^ ( BK là tia phân giác B^B^ )
Mà KBAˆ=BKCˆKBA^=BKC^ ( so le trong )
\Rightarrow KBCˆ=BKCˆKBC^=BKC^
\Rightarrow △△ BCK cân tại C
\Rightarrow BC = CK (2)
Cộng (1) và (2) có :
AD + BC = KD + CK
\Rightarrow AD+BCTổng hai cạnh bên=CDCạnh đáy