Tìm các số nguyên x, y thỏa mãn:
\(x^2-3y^2+2xy-2x+6y-8=0\)
Tìm các số nguyên x,y thỏa mãn : x2 -3y2+2xy-2x+6y-4=0
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!
Tìm các số nguyên x,y thỏa mãn \(x^2-3y^2+2xy-2x+6y-4=0\)
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
tìm các số nguyên x,y thỏa mãn
\(x^2-2xy+2y^2-2x+6y+5=0\)
\(x^2-2xy+2y^2-2x+6y+5=0\)
\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y^2+2y+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y+1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-y-1=0\\y+2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
\(x^2-2xy+2y^2-2x+6y+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+y^2+4y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
giải phương trình x^2+xy-2012x-2013y-2014=0
tìm các số nguyên x,y thỏa mãn : x^2-2xy+2y^2-2x+6y+5=0
Ta có:
\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)
\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)
\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)
Tìm các cặp số nguyên x;y thỏa mãn:
a) 6x^2+10y^2+2xy-x-28y+18=0
b) 2x^6+y^2-2x^3y=320
Bài 1: Tìm các cặp số nguyên x;y thỏa mãn 2xy+2x-3y+5=0
Tìm số nguyên x y thỏa mãn x^2+3y^2+4xy=2x+6y+24
c1,tìm x,y số nguyên biết 2xy-x-y=2
c2,tìm đa thức M biết rằng M+(5x^2-2xy)=6x^2+9xy-y^2 tính giá trị của M khi x, y thỏa mãn (2x-5)^2018+(3y+4)^2<0 hoặc =0