Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Tu Nguyen
Xem chi tiết
Hà Quang Minh
26 tháng 7 2023 lúc 23:14

\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)

Vậy a = -2; b = 1.

Trần Đức Bình
8 tháng 11 2024 lúc 22:27

G

Vũ Thành Trung
Xem chi tiết
Nguyễn Hữu Lộc
Xem chi tiết
nguyễn khánh linh
Xem chi tiết
Nguyễn Linh Chi
12 tháng 9 2019 lúc 0:29

A là đa thức có hệ số cao nhất là 1

=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)

Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)

=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)

Cân bằng hệ số hai vế ta có:

\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)

<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)

Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)

Nguyễn Ngọc Vi
Xem chi tiết
Đào Thị Thùy Dương
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 4 2021 lúc 21:24

P(x) = x4 - 2x3 + 3x2 + ax + b

P(x) là bình phương của một đa thức => P(x) = ( x2 + cx + d )2

=> x4 - 2x3 + 3x2 + ax + b = ( x2 + cx + d )2

<=> x4 - 2x3 + 3x2 + ax + b = x4 + 2cx3 + ( 2d + c)x2 + 2cdx+ d2

( thực ra lớp 8 mới học HĐT nhưng để làm được bất đắc dĩ mình mới dùng :D )

Đồng nhất hệ số ta có : \(\hept{\begin{cases}2c=-2\\2d+c^2=3\\2cd=a\end{cases};b=d^2}\)=> \(\hept{\begin{cases}a=-2\\b=d=1\\c=-1\end{cases}}\)

Vậy ... 

Khách vãng lai đã xóa
Đào Thị Thùy Dương
10 tháng 4 2021 lúc 21:28

Quỳnh Legendd cho mình hỏi chút là C và d ở đâu vậy?

Khách vãng lai đã xóa
Nghị Hồng Vân Anh
Xem chi tiết
ST
28 tháng 10 2018 lúc 11:25

\(P=x^4-2x^3-x^2+ax+b=\left[\pm\left(x^2+cx+d\right)\right]^2=\left(x^2+cx+d\right)^2\) (vì P là đa thức bậc 4, hệ số tự do là 1)

\(\Leftrightarrow P=x^4+c^2x^2+d^2+2cx^3+2dx^2+2cdx\)

\(\Leftrightarrow P=x^4+2cx^3+\left(c+2d\right)x^2+2cdx+d^2\)

     2c = -2               c = -1

=> c2 + 2d = -1  => d = -1

     a = 2cd              a = 2

     b = d2                b = 1

Vậy \(P=\left(x^2-x-1\right)^2\)

ST
28 tháng 10 2018 lúc 11:42

ghi nhàm đề :v

\(P=\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)

      2c = 2              c = 1

=> c2 + 2d = a  => a = 3

     2cd = 2             d = 1

     d2 = b               b = 1

Vậy P = x4 + 2x3 + 3x2 + 2x + 1 = (x2 + x + 1)2

Khánh Ngọc Cute
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 9 2016 lúc 19:13

a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)

\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)

\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)

Áp dụng hệ số bất định, ta có : 

\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)

Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)

b/ Tương tự

 

Bích Ngọc
Xem chi tiết
qwerty
29 tháng 7 2017 lúc 21:55

Câu hỏi của Khánh Ngọc Cute - Toán lớp 8 | Học trực tuyến

Nguyễn Thị Thu
25 tháng 6 2019 lúc 10:31

làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)eoeo