Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Dương
Xem chi tiết
Nguyễn Đức Trí
28 tháng 6 2023 lúc 16:56

(x-1)(x-3)(x-4)>0

Trường hợp 1 :

x-1>0; x-3>0; x-4>0

Nên x>1; x>3; x>4

Vậy x>4 (hay x∈ Z/x ∈ { 5;6;7...})

Trường hợp 2 :

x-1>0; x-3<0; x-4<0

Nên x>1; x<3; x<4

Vậy 1<x<3 (hay x∈ Z/x ∈ { 2 })

 

Nguyễn Minh Dương
28 tháng 6 2023 lúc 18:24

Bn giải nhầm đề bài rùi kìa

Nguyễn Minh Dương
Xem chi tiết

Đặt F(\(x\)) = (\(x\) - 1)(\(x\)+3)(\(x\) - 4)>0

Lập bảng xét dấu:

\(x\)             -3                    1                              4
\(x-1\)      -                   -        0                +                    +     
\(x\) + 3      -      0          +                          +                     +
\(x-4\)      -                   -                          -              0      +
F(\(x\))     -       0           +       0                -              0      +

Theo bảng trên ta có Nghiệm của bất phương trình là:

\(\left[{}\begin{matrix}x\in\left\{-2;-1;0\right\}\\x\in\left\{x\in Z/x>4\right\}\end{matrix}\right.\)

 

rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
Sakura
Xem chi tiết
Mèo Mun
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết