Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Bá Hoàng Thạch
Xem chi tiết
Lê Phương Trà
Xem chi tiết
Hoàng Trần Duy Hải
Xem chi tiết
Trần Anh Quân
Xem chi tiết
Trịnh Hồng Phát
Xem chi tiết
Nguyên Hiền Thi
Xem chi tiết
Bùi Diễm Quỳnh
Xem chi tiết
Đinh Tiến Dũng
Xem chi tiết
Mr Lazy
9 tháng 7 2015 lúc 10:16

Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))

Đinh Tiến Dũng
9 tháng 7 2015 lúc 15:30

vui long giai chi tiet
minh hong hiu

tth_new
6 tháng 1 2019 lúc 19:26

Ta c/m \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>1\) (2010 dấu căn)  (1)

Thật vậy: \(VT>\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{1}}}}\)

\(=\sqrt{3+\sqrt{3+\sqrt{3+1}}}=\sqrt{3+\sqrt{3+2}}=\sqrt{3+\sqrt{5}}>2\)

Vậy (1) đúng

Đặt \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a\left(a>2\right)\) (có 2010 dấu căn)

Suy ra \(3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}=a^2\) (có 2009 dấu căn)

Suy ra \(\sqrt{3+\sqrt{3+...+\sqrt{3}}}=a^2-3\)

Thay vào,ta có: \(VT=\frac{3-a}{6+3-a^2}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\)

Mà a > 2 nên \(VT=\frac{1}{3+a}< \frac{1}{3+2}=\frac{1}{5}< \frac{1}{4}^{\left(đpcm\right)}\) (không chắc nha!)

Nguyên Thành Nguyên
Xem chi tiết