Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo
Xem chi tiết
DO DUC QUOC LINH
2 tháng 8 2016 lúc 7:04

Vi  oA+OB+OC<GA+GB+GC+GD nen:1<2

Nguyễn PHương Thảo
Xem chi tiết
Nguyễn PHương Thảo
Xem chi tiết
Nguyễn PHương Thảo
Xem chi tiết
Nguyễn Thị Vân Anh
Xem chi tiết
Đặng Thiên Long
Xem chi tiết
Nguyễn Tất Đạt
20 tháng 9 2018 lúc 17:32

A B C G M A' B' C' D E F H K N P

+) Gọi AP là đường trung tuyến của \(\Delta\)ABC, giao điểm của tia AM và BC là D. Qua M kẻ đường thẳng song song với AP, nó cắt BC tại N.

Xét \(\Delta\)PDA có: M thuộc AD; N thuộc PD; MN // AP => \(\frac{MN}{AP}=\frac{DM}{DA}\Rightarrow\frac{DM}{DA}=\frac{MN}{3.GP}\) (ĐL Thales) (*)

Xét \(\Delta\)GA'P có: M thuộc GA'; N thuộc PA'; MN // GP => \(\frac{MN}{GP}=\frac{MA'}{GA'}\), thế vào (*) được

\(\frac{DM}{DA}=\frac{1}{3}.\frac{MA'}{GA'}\). Chứng minh tương tự: \(\frac{EM}{EB}=\frac{1}{3}.\frac{MB'}{GB'};\frac{FM}{FC}=\frac{1}{3}.\frac{MC'}{GC'}\)

Suy ra \(\frac{1}{3}\left(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}\right)=\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\)

\(\Rightarrow\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\left(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\right)\)(1)

+) Gọi giao điểm của BM và AC là E; CM với AB là F. Qua M kẻ 2 đường thẳng song song với AB và BC, chúng cắt AC lần lượt tại H và K.

Áp dụng ĐL Thales, ta có các tỉ số: 

\(\frac{DM}{DA}=\frac{CK}{AC};\frac{FM}{FC}=\frac{AH}{AC};\frac{EM}{EB}=\frac{EH}{EA}=\frac{EK}{EC}=\frac{EH+EK}{EA+EC}=\frac{HK}{AC}\)

Cộng các tỉ số trên, ta được: \(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}=\frac{CK+HK+AH}{AC}=\frac{AC}{AC}=1\)(2)

+) Từ (1) và (2) => \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\) (đpcm).

Mai Thanh Hoàng
Xem chi tiết
Nguyễn Mai Phương
19 tháng 2 2018 lúc 19:54

a, https://olm.vn/hoi-dap/question/1030999.html

b,\(\frac{\sqrt{3}}{3}\)

Nguyễn Mai Phương
19 tháng 2 2018 lúc 20:11

CM PD+PE+PF=AH(đường cao)=\(\frac{\sqrt{3}AB}{2}\)

CM BD+CE+AF=\(\frac{3AB}{2}\)

D/s:\(\frac{\sqrt{3}}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2019 lúc 4:02

Giải bài 29 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 29 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi trung điểm BC, CA, AB lần lượt là M, N, P.

Khi đó AM, BN, CP đồng quy tại trọng tâm G.

Ta có: ∆ABC đều suy ra:

+ ∆ABC cân tại A ⇒ BN = CP (theo chứng minh bài 26).

+ ∆ABC cân tại B ⇒ AM = CP (theo chứng minh bài 26).

⇒ AM = BN = CP (1)

Vì G là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:

Giải bài 29 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Từ (1) , (2) ⇒ GA = GB = GC.

Trang Hoang
Xem chi tiết