Cho tam giác AB=5cm, AC=6cm, BC=7cm. KẺ AH vuông góc BC. Tính AH
bài này thui
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Kẻ AH vuông góc BC ( H thuộc BC)
a) chứng minh tam giác ABH = tam giác ACH
b) Tính độ dài AH
c) Từ H kẻ HD vuông góc với AB (D thuộc AB) kẻ HE vuông góc vs AC ( E thuộc AC). Chứng minh AH là đường trung trục của DE
Cho tam giác ABC có AB=AC=5cm;BC=6cm. Kẻ AH vuông góc BC(H thuộc BC)
a. Chứng minh HB=HC và góc BAH=góc CAH
b. Tính độ dài AH
c. Kẻ HD vuông góc AB (D thuộc AB); HE vuông góc AC (E thuộc AC). Chứng minh tam giác ADE cân.
d. Chứng minh DE song song BC
Làm giúp mình nha
Cho tam giác abc cân tại a có AB=AC=5cm, BC=6cm?( AB=AC=5cm)
a cmr HC=HB
b tính AH?CMR góc HAB=HAC
c kẻ HM vuông góc AB, HN vuông góc AC, CMR HMN cân
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
b: HB=HC=3cm
=>AH=4cm
AH là phân giác của góc BAC
=>góc BAH=góc CAH
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>HM=HN
=>ΔHMN cân tại H
Cho tam giác ABC ( cân tại A ) có AB=AC=5cm; BC=6cm. Kẻ AH vuông góc BC(H thuộc BC)
a) Chứng minh tam giác ABH = tam giác ACH
b) Chứng minh H là trung điểm của BC
c) Tính AH
a, Xét tam giác ABH và tam giác ACH ta có
AB = AC (gt)
AH _ chung
^AHB = ^AHC = 900
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam giác ABC cân tại A
AH là đường cao đồng thời là đường trung tuyến
=> H là trung điểm BC
c, Do H là trung điểm BC => HB = 6/2 = 3 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\)
Cho tam giác ABC cân tại A có AB = 5cm, BC = 6cm. Kẻ AH vuông góc với BC ( H thuộc BC ). Tính độ dài đoạn AH
\(AH\perp BC\)
=> AH là đường cao của \(\Delta ABC\)
\(\Delta ABC\) cân tại A có AH là đường cao cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta HAB\) vuông tại H (AH là đường cao) có:
\(AB^2=AH^2+BH^2\left(Pytago\right)\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Cho tam giác ABC cân tại A. Biết AC=5cm, BC=6cm. Kẻ AH vuông góc với BC tại H a) CMR: Tam giác ABH=tam giác ACH. b) Tính độ dài đoạn thẳng AH c) Từ H kẻ đường thẳng song song với AC, cắt AB tại M. CMR: M là trung điểm của AB
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
b: BH=CH=BC/2=3cm
=>AH=4(cm)
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
Do đó: M là trung điểm của AB
Cho tam giác ABC có AB=AC=5cm;BC=6cm. Kẻ AH vuông góc BC(H thuộc BC)
a. Chứng minh HB=HC và góc BAH=góc CAH
b. Tính độ dài AH
c. Kẻ HD vuông góc AB (D thuộc AB); HE vuông góc AC (E thuộc AC). Chứng minh tam giác ADE cân.
d. Chứng minh DE song song BC
Làm giúp mình nha
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm . Kẻ AH vuông góc với BC tại H.
a) chứng minh: AH là tia phân giác của A.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB ( D thuộc AB), Kẻ HE vuông góc với AC ( E thuộc AC) chứng minh tam giác HDE là tam giác cân.
có vẽ hình ạ
a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường phân giác góc A (Tính chất tam giác cân).
b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của BC.
=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).
Xét tam giác AHB vuông tại A:
Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).
=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)
=> AH = 3 (cm).
c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:
AH chung.
Góc DAH = Góc EAH (AH là đường phân giác góc A).
=> Tam giác AHD = Tam giác AHE (ch - gn).
=> HD = HE (2 cạnh tương ứng).
=> Tam giác DHE cân tại H.