so sanh :
A=2000/2001+2001/2002
B=2000+2001/2001+2002
không quy đồng mẫu số so sánh A=2000/2001+2001/2002
B=2000/2001+2001/2002
Ta có: \(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)và\(B=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
Mà\(\dfrac{2000}{2001}+\dfrac{2001}{2002}=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
Vậy A=B
Ta có: \(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
\(B=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
Do đó: A=B
So sanh
A = 2000/2001 +2001/2002
B = 2000+2001/2001+2002
Ta có:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) và \(B=\frac{2000+2001}{2001+2002}\)
\(\Rightarrow B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta Xét:
\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
\(\Rightarrow A>B\)
A=2000/2001 + 2001/2000 ; B=2000/2001+2001/2002
khong quy dong. So sanh A va B
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
$B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}$B=20002001+2002 +20012001−2002
Vì:
Ta có : \(B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}\)
Vì : \(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)\)
\(\Rightarrow A>B\)
so sanh
\(A\frac{2000}{2001}+\frac{2001}{2002};B\frac{2000+2001}{2001+2002}\)
Ta có:\(B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}\)
Vì:\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)\)
\(\Rightarrow A>B\)
So sánh:
A= 2000/2001 + 2001/2002 với. B=2000+2001/2001+2002
So sánh A và B, biết: A= 2000/2001 + 2001/ 2002 và B= 2000 + 2001/ 2001 + 2002
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B
Cho A=2000/2001+2001/2002 và B=2000+2001/2001+2002
So sánh A và B
B=2000+1+2002=4003
A=2000/2001+2001/2002
=2002.(2000+2001)/2001.2002
=2000+2001/2001<1
Mà B>1 suy ra A<B
so sanh A va B: \(A=\frac{2000}{2001}\) +\(\frac{2001}{2002}\)\(B=\frac{2000+2001}{2001+2002}\)
Ta có:
B=\(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Do \(\frac{2000}{2001}>\frac{2000}{2001+2002};\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có:$B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}$B=20002001+2002 +20012001−2002
Vì:$\frac{2000}{2001}>\frac{2000}{2001+2002}$20002001 >20002001+2002
$\frac{2001}{2002}>\frac{2001}{2001+2002}$20012002 >20012001+2002
$\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)$⇒(20002001 +20012002 )>(20002001−2002 −20012001+2001 )
$\Rightarrow A>B$⇒A>B
\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001}>\frac{2000}{2001+2002}\) và \(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
nên \(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\) hay A>B
cho A= 2000/2001+2001/2002, B= 2000+2001/2001+2002 ko đc quy đồng hãy so sánh A và B
Ta có
B= 2000/2001+2002 + 2001/2001+2002.
Mà 2000/2001+2002 < 2000/2001 và 2001/2001+2002 < 2001/2002.
Nên 2000/2001+2002 + 2001/ 2001+2002 < 2000/2001 + 2001/2002.
Hay 2000+2001/ 2001+2002 < 2000/2001 + 2001/2002
Suy ra B < A
Ta có : 2000/2001 > 2000/ 2001 + 2002 (1)
2001/2002 > 2001/2001+2002(2)
Cộng các bất đẳng thức (1) và (2) vế với nhau:
Vậy 2000/2001 + 2001/2002> 2000/2001+2002 hay A > B