chứng minh rằng giá trị nhỏ nhất của đa thức: f(x)= x2 +2x+4 là 3 khi x=-1
chứng minh rằng giá trị nhỏ nhất của đa thức: f(x)= x2 +2x+4 là 3 khi x=-1
chứng minh rằng giá trị nhỏ nhất của đa thức: f(x)= x2 +2x+4 là 3 khi x=-1
Ta có: \(x^2+2x+4=x^2+2.x.1+1+3\)
\(=\left(x+1\right)^2+3\) . Dễ thấy:
\(\left(x+1\right)^2\ge0\forall x\) Dấu ''='' xảy ra
\(\Leftrightarrow x=-1\)
Vậy GTNN của.......................là 3 khi x = -1
a)tìm đa thức f(x)=x^2+ax+b, biết khi chia f(x) cho x+1 thì dư là 6 còn khi chia cho x-2 thì dư là 3
b)tìm giá trị nhỏ nhất của biểu thức A=x.(x-3)
c) tìm giá trị nhỏ nhất của biểu thức A=x.(2x-3)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
Chobiểuthức:A= x2 2x1: x 1xx2 x
a) Rút gọn A
c) Tìm x để A = 4
b)Tính giá trị của A khi 2x 5 3 d) Tìm x để A < 2
e) TìmxZđểAZ
f)TìmxZđểAN
g) Với x > 1. Chứng minh rằng A > 1 với mọi x
h) Tìm x để A dương, khi đó tìm giá trị nhỏ nhất của √𝐴
Bài 16: Chứng minh rằng các đa thức sau đây vô nghiệm :
a) x2+1 ; b) ( x - 2 )4 + 1 ; c) x2 + 2x + 3 ; d) -x2-2 ; e) 2x - x2-2
Bài 17 : C/m rằng giá trị nhỏ nhất của đa thức : f ( x ) = x2 + 2x + 4 là 3 khi x = -1
Giúp mình nha ^^
Bài 17:
\(f\left(x\right)=x^2+2x+1+3=\left(x+1\right)^2+3\ge3\)
Dấu '=' xảy ra khi x+1=0
hay x=-1
a) Tìm đa thức f(x) = x2 + ax + b , biết khi chia f(x) cho x + 1 thì dư là 6, còn khi chia cho x – 2 thì dư là 3
b) Tìm giá trị nhỏ nhất của biểu thức A = x.(x – 3)
giải chi tiết ra nhé
bài 3:
1, chứng minh rằng biểu thức sau ko phụ thuộc vào m:
A=(4x2+y2).(2x+y).(2x-y)
2,chứng minh rằng hiệu của hai số nguyên liên tiếp là một số lẻ
3,rút gọn :P=(3x+4)2-10x-(x-4).(x+4)
4,tìm gá trị nhỏ nhất vủa biểu thức :
Q=x2-4x+5
giúp em với ạ !
\(1,\\ A=\left(4x^2+y^2\right)\left(4x^2-y^2\right)=16x^4-y^4\)
Đề sai, biểu thức A ko có m thì sao chứng minh?
\(2,\) Gọi 2 số nguyên lt là \(a;a+1\left(a\in Z\right)\)
Ta có \(a+1-a=1\) là số lẻ (đpcm)
\(3,P=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)
\(4,Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)
1) m ??
2) Gọi 2 số nguyên liên tiếp là \(a,a+1\left(a\in Z\right)\)
\(\left(a+1\right)-a=a+1-a=1\) là một số lẻ
3) \(P=\left(3x+4\right)^2-10x-\left(x-4\right)\left(x+4\right)=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)
4) \(Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)
\(minQ=1\Leftrightarrow x=2\)
Bài 1: Cho đa thức f(x) = 2x – x2 + 2|x + 1|.
a) Thu gọn đa thức f(x).
b) Tính giá trị của f(x) khi x = –3/2.