x^3-3x^2-4x+12 chia x+2
thực hiện phép chia và tìm x để số dư bằng 0
a)(x^3-x^2-14x+24):(x^3+x-12)
b)(x^5+4x^3+3x^2-5x+15);(x^3-x+3)
c)(2x^4+2^3+3x^2-5x-20):(x^2+x+4)
d)(2x^4-14x^3+19x^2-20x+9):(x^2-4x+1)
giúp mk gấp vs ah!!!!!!
a.4x^3-4x^2+x=0
b.x.(x-3)+12-4x=0
c.x^3+3x^2+3x-7=0
*tìm x*
c: Ta có: \(x^3+3x^2+3x-7=0\)
\(\Leftrightarrow x+1=2\)
hay x=1
b: Ta có: \(x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Tìm x:
a) 3x + 6 chia hết cho x
b) x+12 chia hết cho x+4
c) 4x + 27 chia hết cho x + 3
d) x^2 + 3x + 4 chia hết cho x +1
Thực hiện phép chia phân thức :
a) \(\dfrac{x^2-5x+6}{x^2+7x+12}:\dfrac{x^2-4x+4}{x^3+3x}\)
b) \(\dfrac{x^2+2x-3}{x^2+3x-10}:\dfrac{x^2+7x+12}{x^2-9x+14}\)
A(x) =x^3+3x^2 -4x-12 B (x)=2x^3 -3x^2+4x +1 Tính A (x) +B (x).
\(A\left(x\right)+B\left(x\right)=x^3+3x^2-4x-12+2x^3-3x^2+4x+1\)
\(=3x^3-11\)
Giải phương trình:
c) \(\dfrac{2x-1}{x^2+4x-5}+\dfrac{x-2}{x^2-10x+9}=\dfrac{3x-12}{x^2-4x-45}\)
d) \(\dfrac{3x-1}{18x^2+3x-28}-\dfrac{4x}{24x^2+23x-12}=\dfrac{3}{48x^2-74x+21}\)
c: =>\(\dfrac{2x-1}{\left(x+5\right)\left(x-1\right)}+\dfrac{x-2}{\left(x-1\right)\left(x-9\right)}=\dfrac{3x-12}{\left(x-9\right)\left(x+5\right)}\)
=>(2x-1)(x-9)+(x-2)(x+5)=(3x-12)(x-1)
=>2x^2-19x+9+x^2+3x-10=3x^2-15x+12
=>-16x-1=-15x+12
=>-x=13
=>x=-13
tìm a b c để F(x) chia hết cho G(x)
F(x) = x^5+x^4-9x^3+ax^2+bx+c
G(x)=x^3+3x^2-4x-12
phân tích đa thức thành nhân tử:
x^3 - 3x^2 + 4x - 2x^3 - 4x^2 + 5x - 2(x^2 - 3x - 1) ^2 -12(x^2 - 3x -1) + 27(x^2 + x +1)(x^2 + x +2) -12(x^2 + x + 4) + 8x